scholarly journals Outer Synchronization of Complex-Variable Networks with Complex Coupling via Impulsive Pinning Control

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2110
Author(s):  
Yanjie Ji ◽  
Zhaoyan Wu

In this paper, outer synchronization of complex-variable networks with complex coupling is considered. Sufficient conditions for achieving outer synchronization using static impulsive pinning controllers are first derived according to the Lyapunov function method and stability theory of impulsive differential equations. From these conditions, the necessary impulsive gains and intervals for given networks can be easily calculated. Further, an adaptive strategy is introduced to design universal controllers and avoid repeated calculations for different networks. Notably, the estimation algorithms of the impulsive gains and intervals are provided. Finally, three numerical examples are performed to verify the effectiveness of the main results.


2013 ◽  
Vol 24 (09) ◽  
pp. 1350058 ◽  
Author(s):  
ZHAOYAN WU ◽  
QINGLING YE ◽  
DANFENG LIU

In this paper, finite-time synchronization of dynamical networks coupled with complex-variable chaotic systems is investigated. According to Lyapunov function method and finite-time stability theory, both the dynamical networks without and with coupling delay are considered through designing proper finite-time controllers. Several sufficient conditions for finite-time synchronization are derived and verified to be effective by some numerical examples.



2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Zijian Liu ◽  
Chenxue Yang

We study a two-patch impulsive migration periodicN-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system are established. Some numerical examples are shown to verify our results and discuss the model further.



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianbao Zhang ◽  
Zhongjun Ma ◽  
Jinde Cao

A recent research indicated that the corticocortical connectivity network of the cat possesses cluster structure and that each cluster in the network is scale-free and has a most connected hub. Motivated by that research, we slightly modify the network model and derive sufficient conditions for cluster synchronization of the modified network based on Lyapunov function method. The obtained results indicate that cluster synchronization can be induced by the hubs of the scale-free networks. In our opinion, the concept of hub-induced synchronization provides a better understanding of cluster synchronization in scale-free networks. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.



2010 ◽  
Vol 21 (08) ◽  
pp. 1051-1063 ◽  
Author(s):  
ZHAOYAN WU ◽  
XINCHU FU ◽  
GUANRONG CHEN

In this paper, topology monitoring of growing networks is studied. When some new nodes are added into a network, the topology of the network is changed, which needs to be monitored in many applications. Some auxiliary systems (network monitors) are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied to designing such network monitors. Based on the Lyapunov function method via constructing a potential or energy function decreasing along any solution of the system, and the LaSalle's invariance principle, which is a generalization of the Lyapunov function method, some sufficient conditions for achieving topology monitoring are obtained. Illustrative examples are provided to demonstrate the effectiveness of the new method.



Author(s):  
Ruofeng Rao

By partly generalizing the Lipschitz condition of existing results to the generalized Lipschitz one, the author utilizes a fixed point theorem, variational method and Lyapunov function method to derive the unique existence of globally asymptotical input-to-state stability of positive stationary solution for Gilpin-Ayala competition model with diffusion and delayed feedback under Dirichlet zero boundary value. Remarkably, it is the first paper to derive the unique existence of the stationary solution of reaction-diffusion Gilpin-Ayala competition model, which is globally asymptotical input-to-state stability. And numerical examples illuminate the effectiveness and feasibility of the proposed methods.



2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ahmadjan Muhammadhaji ◽  
Zhidong Teng

Two classes of periodicN-species Lotka-Volterra facultative mutualism systems with distributed delays are discussed. Based on the continuation theorem of the coincidence degree theory developed by Gaines and Mawhin and the Lyapunov function method, some new sufficient conditions on the existence and global attractivity of positive periodic solutions are established.



2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Wuneng Zhou ◽  
Anding Dai ◽  
Dongbing Tong ◽  
Jun Yang

This paper investigates the exponential synchronization problem of stochastic complex dynamical networks with impulsive perturbation and Markovian switching. The complex dynamical networks consist ofκmodes, and the networks switch from one mode to another according to a Markovian chain with known transition probability. Based on the Lyapunov function method and stochastic analysis, by employingM-matrix approach, some sufficient conditions are presented to ensure the exponential synchronization of stochastic complex dynamical networks with impulsive perturbation and Markovian switching, and the upper bound of impulsive gain is evaluated. At the end of this paper, two numerical examples are included to show the effectiveness of our results.



2012 ◽  
Vol 2012 ◽  
pp. 1-17
Author(s):  
Yi Zhao ◽  
Jianwen Feng ◽  
Jingyi Wang

The cluster synchronization of linearly coupled complex networks with identical and nonidentical nodes is studied. Without assuming symmetry, we proved that these linearly coupled complex networks could achieve cluster synchronization under certain pinning control schemes. Sufficient conditions guaranteeing cluster synchronization for any initial values are derived by using Lyapunov function methods. Moreover, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical examples are given to illustrate our theoretical results.



Author(s):  
Yanzi Lin ◽  
Ping Zhao

Abstract In this paper, the global asymptotic stability (GAS) of continuous-time and discrete-time nonlinear impulsive switched positive systems (NISPS) are studied. For continuous-time and discrete-time NISPS, switching signals and impulse signals coexist. For both of these systems, using the multiple max-separable Lyapunov function method and average dwell-time (ADT) method, some sufficient conditions on GAS are given. Based on these, the GAS criteria are also given for continuous-time and discrete-time linear impulsive switched positive systems (LISPS). From our criteria, the stability of the systems can be judged directly from the characteristics of the system functions, switching signals and impulse signals of the systems. Finally, simulation examples verify the validity of the results.



2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Lixin Gao ◽  
Jingjing Zhang ◽  
Wenhai Chen

We consider multiagent consensus problems in a decentralized fashion. The interconnection topology among the agents is switching and directed. The agent dynamics is expressed in the form of a double-integrator model. Two different cases are considered: one is the leader-following case and the other is the leaderless case. Based on graph theory and the common Lyapunov function method, some sufficient conditions are established for the consensus stability of the considered systems with the neighbor-based feedback laws in both leader-following case and leaderless case, respectively. As special cases, the consensus conditions for balanced and undirected interconnection topology cases can be established directly. Finally, two numerical examples are given to illustrate the obtained results.



Sign in / Sign up

Export Citation Format

Share Document