A novel dynamical community detection algorithm based on weighting scheme

2015 ◽  
Vol 26 (08) ◽  
pp. 1550091 ◽  
Author(s):  
Ju Li ◽  
Kai Yu ◽  
Ke Hu

Network dynamics plays an important role in analyzing the correlation between the function properties and the topological structure. In this paper, we propose a novel dynamical iteration (DI) algorithm, which incorporates the iterative process of membership vector with weighting scheme, i.e. weighting W and tightness T. These new elements can be used to adjust the link strength and the node compactness for improving the speed and accuracy of community structure detection. To estimate the optimal stop time of iteration, we utilize a new stability measure which is defined as the Markov random walk auto-covariance. We do not need to specify the number of communities in advance. It naturally supports the overlapping communities by associating each node with a membership vector describing the node's involvement in each community. Theoretical analysis and experiments show that the algorithm can uncover communities effectively and efficiently.

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 680
Author(s):  
Hanyang Lin ◽  
Yongzhao Zhan ◽  
Zizheng Zhao ◽  
Yuzhong Chen ◽  
Chen Dong

There is a wealth of information in real-world social networks. In addition to the topology information, the vertices or edges of a social network often have attributes, with many of the overlapping vertices belonging to several communities simultaneously. It is challenging to fully utilize the additional attribute information to detect overlapping communities. In this paper, we first propose an overlapping community detection algorithm based on an augmented attribute graph. An improved weight adjustment strategy for attributes is embedded in the algorithm to help detect overlapping communities more accurately. Second, we enhance the algorithm to automatically determine the number of communities by a node-density-based fuzzy k-medoids process. Extensive experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively detect overlapping communities with fewer parameters compared to the baseline methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Junjie Jia ◽  
Pengtao Liu ◽  
Xiaojin Du ◽  
Yuchao Zhang

Aiming at the problem of the lack of user social attribute characteristics in the process of dividing overlapping communities in multilayer social networks, in this paper, we propose a multilayer social network overlapping community detection algorithm based on trust relationship. By combining structural trust and social attribute trust, we transform a complex multilayer social network into a single-layer trust network. We obtain the community structure according to the community discovery algorithm based on trust value and merge communities with higher overlap. The experimental comparison and analysis are carried out on the synthetic network and the real network, respectively. The experimental results show that the proposed algorithm has higher harmonic mean and modularity than other algorithms of the same type.


Author(s):  
Himansu Sekhar Pattanayak ◽  
Harsh K. Verma ◽  
Amrit Lal Sangal

Community detection is a pivotal part of network analysis and is classified as an NP-hard problem. In this paper, a novel community detection algorithm is proposed, which probabilistically predicts communities’ diameter using the local information of random seed nodes. The gravitation method is then applied to discover communities surrounding the seed nodes. The individual communities are combined to get the community structure of the whole network. The proposed algorithm, named as Local Gravitational community detection algorithm (LGCDA), can also work with overlapping communities. LGCDA algorithm is evaluated based on quality metrics and ground-truth data by comparing it with some of the widely used community detection algorithms using synthetic and real-world networks.


2019 ◽  
Vol 22 (03) ◽  
pp. 1950004
Author(s):  
HAO LONG ◽  
XIAO-WEI LIU

A community is the basic component structure of complex networks and is important for network analysis. In recent decades, researchers from different fields have witnessed a boom of community detection, and many algorithms were proposed to retrieve disjoint or overlapping communities. In this paper, a unified expansion approach is proposed to obtain two different network partitions, which can provide divisions with higher accuracies and have high scalability in large-scale networks. First, we define the edge intensity to quantify the densities of network edges, a higher edge intensity indicates a more compact pair of nodes. Second, vertices of higher density edges are extracted out and denoted as core nodes, whereas other vertices are treated as margin nodes; finally we apply an expansion strategy to form disjoint communities: closely connected core nodes are combined as disjoint skeleton communities, and margin nodes are gradually attached to the nearest skeleton communities. To detect overlapping communities, extra steps are adopted: potential overlapping nodes are identified from the existing disjoint communities and replicated; and communities that bear replicas are further partitioned into smaller clusters. Because replicas of potential overlapping nodes might remain in different communities, overlapping communities can be acquired. Experimental results on real and synthetic networks illustrate higher accuracy and better performance of our method.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ping Wang ◽  
Yonghong Huang ◽  
Fei Tang ◽  
Hongtao Liu ◽  
Yangyang Lu

Detecting the community structure and predicting the change of community structure is an important research topic in social network research. Focusing on the importance of nodes and the importance of their neighbors and the adjacency information, this article proposes a new evaluation method of node importance. The proposed overlapping community detection algorithm (ILE) uses the random walk to select the initial community and adopts the adaptive function to expand the community. It finally optimizes the community to obtain the overlapping community. For the overlapping communities, this article analyzes the evolution of networks at different times according to the stability and differences of social networks. Seven common community evolution events are obtained. The experimental results show that our algorithm is feasible and capable of discovering overlapping communities in complex social network efficiently.


2019 ◽  
Vol 33 (26) ◽  
pp. 1950322 ◽  
Author(s):  
Guishen Wang ◽  
Yuanwei Wang ◽  
Kaitai Wang ◽  
Zhihua Liu ◽  
Lijuan Zhang ◽  
...  

Overlapping community detection is a hot topic in research of complex networks. Link community detection is a popular approach to discover overlapping communities. Line graph is a widely used model in link community detection. In this paper, we propose an overlapping community detection algorithm based on node distance of line graph. Considering topological structure of links in graphs, we use line graph to transform links of graph into nodes of line graph. Then, we calculate node distance of line graph according to their dissimilarity. After getting distance matrix, we proposed a new [Formula: see text] measure based on nodes of line graph and combine it with clustering algorithm by fast search and density peak to identify node communities of line graph. Finally, we acquire overlapping node communities after transforming node communities of line graph back to graph. The experimental results show that our algorithm achieves a higher performance on normalized mutual information metric.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Laizhong Cui ◽  
Lei Qin ◽  
Nan Lu

Due to the defects of all kinds of modularity, this paper defines a weighted modularity based on the density and cohesion as the new evaluation measurement. Since the proportion of the overlapping nodes in network is very low, the number of the nodes’ repeat visits can be reduced by signing the vertices with the overlapping attributes. In this paper, we propose three test conditions for overlapping nodes and present a fast overlapping community detection algorithm with self-correcting ability, which is decomposed into two processes. Under the control of overlapping properties, the complexity of the algorithm tends to be approximate linear. And we also give a new understanding on membership vector. Moreover, we improve the bridgeness function which evaluates the extent of overlapping nodes. Finally, we conduct the experiments on three networks with well known community structures and the results verify the feasibility and effectiveness of our algorithm.


Author(s):  
P. Manimaran ◽  
K. Duraiswamy

Folksonomies like Delicious and LastFm are modeled as multilateral (user-resource-tag) hypergraphs for studying their network properties. Detecting communities of similar nodes from such networks is a challenging problem. Most existing algorithms for community detection in folksonomies assign unique communities to nodes, whereas in reality, users have multiple relevant interests and same resource is often tagged with semantically different tags. Few attempts to perceive overlapping communities work on forecasts of hypergraph, which results in momentous loss of information contained in original tripartite structure. Propose first algorithm to detect overlapping communities in folksonomies using complete hypergraph structure. The authors’ algorithm converts a hypergraph into its parallel line graph, using measures of hyperedge similarity, whereby any community detection algorithm on unipartite graphs can be used to produce intersecting communities in folksonomy. Through extensive experiments on synthetic as well as real folksonomy data, demonstrate that proposed algorithm can detect better community structures as compared to existing state-of-the-art algorithms for folksonomies.


2014 ◽  
Vol 28 (15) ◽  
pp. 1450120 ◽  
Author(s):  
Zhiyuan Zhang ◽  
Xia Feng ◽  
Weigang Huo

Community detection is an important task in analyzing some real-world complex networks such as social networks and biological networks and draws lots of attention. PLSA-based community detection algorithm is a popular statistical approach for finding overlapping communities. It uses a probabilistic model for link graphs and can automatically find overlapping communities in both synthetic and real-world networks. However, sometimes PLSA community detection model may find separated communities with no connections linking them at all. This paper introduces a new iteration equation to improve it. We also use a simple merging method to determine an appropriate community number which should be specified in PLSA model in advance. Experiments on four real-world networks show that our improved equation can find specified number of communities for most times.


Sign in / Sign up

Export Citation Format

Share Document