Monte Carlo Simulation of Lattice Model of Amphiphile and Solvent Mixture on a Transputer Array

1991 ◽  
Vol 02 (01) ◽  
pp. 284-287
Author(s):  
D. BRINDLE ◽  
C.M. CARE

A binary mixture of an amphiphilic material and water exhibits a rich phase behaviour as the concentrations of the components or temperature is changed [1]. Similar behaviour is also observed for ternary mixtures of amphiphile, oil and water. Lattice models of ternary systems have been extensively studied [e.g. 2]. However these models usually represent the amphiphilic molecule as a bond or site within the lattice and hence ignore the internal structure of the amphiphile. In this paper we present results for the lattice model of a binary system in which we represent the amphiphilic molecules by extended chains. This allows the nature of the chain packing and its influence on phase behaviour to be investigated. It also allows comparison with mean field calculations of chain order parameters [e.g. 3].

1991 ◽  
Vol 248 ◽  
Author(s):  
Thomas L. Madden ◽  
Judith Herzfeld

AbstractThe open-ended aggregation of amphiphilic molecules in aqueous solution generates a broadly polydisperse population of elongated particles that form a variety of partially ordered phases. Herzfeld and coworkers have shown that the phase behavior of these binary systems is well described by self-consistently combining scaled-particle theory for the effects of excluded volume in fluid dimensions, a simple cell model for the effects of excluded volume in positionally ordered dimensions, a mean-field treatment of soft-interactions, and a phenomenological model of aggregate formation. We have now extended this model to ternary systems. We find that the addition of spherical particles to a solution of rod-forming particles induces a very wide isotropic-nematic coexistence region in which a relatively dilute isotropic solution with little aggregation separates from a rather concentrated nematic solution that almost completely excludes the spherical solutes. The magnitude of this effect depends on the relative diameters of the two solutes.


2020 ◽  
Author(s):  
Nanqin Mei ◽  
Morgan Robinson ◽  
James H. Davis ◽  
Zoya Leonenko

ABSTRACTThe structure and biophysical properties of lipid biomembranes are important for normal function of plasma and organelle membranes, which is essential for proper functioning of living cells. In Alzheimer’s disease (AD) the structure of neuronal membranes becomes compromised by the toxic effect of amyloid-β (Aβ) protein which accumulates at neuron synapses, resulting in membrane perforation and dysfunction, oxidative stress and cell death. Melatonin is an important pineal gland hormone that has been shown to be protective against Aβ toxicity in cellular and animal studies, but the molecular mechanism of this protection is not well understood. It has been shown that melatonin can interact with model lipid membranes and alter the membrane biophysical properties, such as membrane molecular order and dynamics. This effect of melatonin has been previously studied in simple model bilayers with one or two lipid components, we consider a more complex ternary lipid mixture as our membrane model. In this study, we used 2H-NMR to investigate the effect of melatonin on lipid phase behaviour of a three-component model lipid membranes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol. We used deuterium labelled palmitoyl-d31 in POPC-d31 and DPPC-d62 separately, to probe the changes in hydrocarbon chain order as a function of temperature and varying concentrations of melatonin. We found that melatonin concentration influences phase separation in these ternary mixtures somewhat differently depending on whether POPC-d31 or DPPC-d62was used. At 5 mol% melatonin we observed phase separation in samples with POPC-d31, but not with DPPC-d62. However, at 10 mol% melatonin phase separation was observed in both samples with either POPC-d31 or DPPC-d62. These results indicate that melatonin can have a strong effect on membrane structure and physical properties, which may provide some clues to understanding how melatonin protects against Aβ.SIGNIFICANCEMelatonin has been shown to be protective against Aβ pathology in animal and cellular studies. Although the mechanism of this protection is not well-understood, melatonin’s membrane-active properties may be important in this regard. In this work solid-state deuterium nuclear magnetic resonance was used to study the effect of melatonin on the POPC/DPPC/cholesterol model membranes. Specifically, we showed that melatonin modifies lipid hydrocarbon chain order to promote phase separation. This knowledge helps to explain the role of melatonin in lipid domain formation and may provide a deeper understanding of the mechanism of melatonin neuroprotection in AD.


1979 ◽  
Vol 44 (8) ◽  
pp. 2378-2383 ◽  
Author(s):  
Libor Červený ◽  
Radka Junová ◽  
Vlastimil Růžička

Hydrogenation of olefinic substrates in binary and ternary mixtures using 5% Pt on silica gel as the catalyst was studied in normal conditions in the liquid phase with methanol or cyclohexane or in solvent-free systems. The effect of the solvent concentration on the selectivity of hydrogenation of the unsaturated alcohol-olefin binary mixtures was investigated. In ternary systems of unsaturated substrates, the effect of each of the substrates on the selectivity of hydrogenation of the remaining two substances was examined. Another system was found in which a jump change of the hydrogenation selectivity occurred on the vanishing of the fastest reacting substance.


1972 ◽  
Vol 12 (02) ◽  
pp. 89-95 ◽  
Author(s):  
Ahmad H.M. Totonji ◽  
S.M. Farouq Ali

Abstract The chief objective of the study was to exercise control on the system phase behavior through the use of mixtures of two alcohols exhibiting opposite phase behavior characteristics in the alcohol-hydrocarbon-water system involved. Such systems were employed in displacements in porous media to ascertain their effectiveness. Introduction Displacement of oil and water in a porous medium by a mutually miscible alcohol or other solvent has been the subject of numerous investigations. This process, in spite of its limited scope as an oil recovery method, has certain mechanistic features that are of value in gaining an understanding of some of the newer recovery techniques (e.g., the Maraflood* process). The works of Gatlin and Slobod, proposing piston-like displacement of oil and water by a miscible alcohol; of Taber et al., describing the displacement mechanism in terms of the ternary phase behavior involved; and of Holm and Csaszar, defining displacement mechanism in terms of phase velocity ratio, are major contributions in this area. In a later work, Taber and Meyer suggested the addition of small amounts of oil and water (as the case may be) to the alcohol used for displacement, since this helped to obtain piston-like displacements with systems that are usually characterized by the efficient displacement of either oil or water. APPARATUS, EXPERIMENTAL PROCEDURE, AND SIMULATOR PROCEDURE, AND SIMULATOR The procedure employed for determining the equilibrium phase behavior of ternary systems involved the titration of a hydrocarbon-water (or brine) mixture by the particular solvent (pure alcohol, or alcohol mixture) for the determination of the binodal curve, and the analysis by refractive index measurement of ternary mixtures having known compositions for the determination of the tie lines. Since the procedure is valid for strictly ternary systems, its use in this case where essentially quaternary systems are involved would yield the total alcohol content rather than the correct proportion of each alcohol. The ternary diagrams presented should be viewed with this limitation in mind. presented should be viewed with this limitation in mind. The apparatus used for experimental runs in porous media consisted of a positive displacement Ruska pump and a core encased in a steel pipe. Suitable sampling apparatus and auxiliary equipment were employed. Most runs consisted of injecting a slug of the particular solvent into a core initially containing a residual oil (waterflood) or irreducible water saturation, at a constant rate, and then following the slug by water or brine. The effluent samples collected were analyzed for the hydrocarbon, water and alcohol in order to plot the production histories. Complete experimental details and fluid production histories. Complete experimental details and fluid properties are given in Ref. 6. Table 1 lists the properties properties are given in Ref. 6. Table 1 lists the properties of the porous media used. Computer simulations of some of the experimental runs, as well as exploratory simulations, were carried out using the method earlier reported. The method basically consists in the representation of a porous medium by a certain number of cells containing immobile oil (or oleic) and water (or aqueous) fractions into which alcohol is injected in a stepwise manner allowing for phase changes. SPEJ P. 89


2016 ◽  
Vol 31 (13) ◽  
pp. 1650072 ◽  
Author(s):  
V. K. Sazonov

The standard perturbation theory in QFT and lattice models leads to the asymptotic expansions. However, an appropriate regularization of the path or lattice integrals allows one to construct convergent series with an infinite radius of the convergence. In the earlier studies, this approach was applied to the purely bosonic systems. Here, using bosonization, we develop the convergent perturbation theory for a toy lattice model with interacting fermionic and bosonic fields.


Author(s):  
A. V. Frolkova ◽  
M. A. Ablizin ◽  
M. A. Mayevskiy ◽  
A. K. Frolkova

An approach to the determination of free variables required for calculating the material balance of the flowsheet of ternary mixtures separation is presented. Phase diagrams of the considered ternary systems are characterized by the presence of a two-phase splitting area and by the presence of different amounts of azeotropes (classes 3.1.0, 3.1.1, 3.2.1 and 3.3.1). For all the systems flowsheets containing three rectification columns and a florentine vessel for separation were suggested. The multivariance of the solution of the balance problem was shown. The approach was illustrated by the example of real ternary systems characterized by different phase diagrams (methanol - chloroform - water, butyl alcohol - water - toluene, nitromethane - hexane - water). The parameters of the rectification columns were presented.


2016 ◽  
Vol 36 (6) ◽  
Author(s):  
Zhiyong Yang ◽  
Aihua Chai ◽  
Peicong Zhou ◽  
Ping Li ◽  
Yongfu Yang

We study the process of a semiflexible polymer chain adsorption on to planar surface by the dynamic Monte Carlo (DMC) method, based on the 3D off-lattice model. Both the strength of attractive monomer–surface interaction (εa) and bending energy (b) have pronounced effect on the adsorption and shape of semiflexible polymer chain. The semiflexible polymer can just fully adsorb on to the surface at certain εa, which is defined as critical εa. The essential features of the semiflexible polymer adsorption on to surface are that (i) the critical εa increases with increase in b; (ii) the shape of the fully adsorbed semiflexible polymer chain is film-like toroid, and the toroid becomes more and more perfect with increase in b. In addition, the size of toroid and the number of turns of toroid can be controlled by the b and εa.


Sign in / Sign up

Export Citation Format

Share Document