A Comparison Between Lattice-Boltzmann and Finite-Element Simulations of Fluid Flow in Static Mixer Reactors

1998 ◽  
Vol 09 (08) ◽  
pp. 1123-1128 ◽  
Author(s):  
D. Kandhai ◽  
D. J.-E. Vidal ◽  
A. G. Hoekstra ◽  
H. Hoefsloot ◽  
P. Iedema ◽  
...  

We present a comparison between the finite-element and the lattice-Boltzmann method for simulating fluid flow in a SMRX static mixer reactor. The SMRX static mixer is a piece of equipment with excellent mixing performance and it is used in highly efficient chemical reactors for viscous systems like polymers. The complex geometry of this mixer makes such 3D simulations nontrivial. An excellent agreement between the results of the two simulation methods and experimental data was found.

Author(s):  
Y. W. Kwon ◽  
J. C. Jo

A computational technique was developed for analysis of fluid-structure interaction. The fluid flow was solved using the lattice Boltzmann method which found to be computationally simple and efficient. In order to apply the lattice Boltzmann method to irregular shapes of fluid domains, the finite element based lattice Boltzmann method was developed. In addition, the turbulent model was also implemented into the lattice Boltzmann formulation. Structures were analyzed using either beam or shell elements depending of the nature of the structures. Then, coupled transient fluid flow and structural dynamics were solved one after another for each time step. Numerical examples for both 2-D and 3-D fluid-structure interaction problems were presented to demonstrate the developed techniques.


Author(s):  
Quan Liao ◽  
Tien-Chien Jen

In this paper, the 3DQ27 model of Lattice Boltzmann Method (LBM) is employed to simulate the fully-developed fluid flow and heat transfer in a curved square duct with curvature ratio (0.02–0.5) and Dean Number (0 – 200). The Dean instability in the curved square duct is fully investigated and a stability diagram is obtained with the parameters of curvature ratio and Dean number. It is found that for the square duct with high curvature ratio (i.e. curvature ratio is greater than 0.2) the onset of transition from single vortex pair to double vortex pairs depends on the Dean number and curvature ratio, while at the small curvature (i.e. curvature ratio is smaller than 0.1) the onset can be characterized by the Dean number alone. This is consistent with the results obtained from the conventional Computational Fluid Dynamic (CFD) method and experimental data. For the friction coefficient and Nusselt number, which are the functions of Dean number and curvature ratio, it was found that the present numerical results are in good agreement with the available experimental data and conventional CFD results within the given parameters range in this paper.


Author(s):  
T. O. M. Forslund ◽  
I. A. S. Larsson ◽  
J. G. I. Hellström ◽  
T. S. Lundström

AbstractThe effects of periodicity assumptions on the macroscopic properties of packed porous beds are evaluated using a cascaded Lattice-Boltzmann method model. The porous bed is modelled as cubic and staggered packings of mono-radii circular obstructions where the bed porosity is varied by altering the circle radii. The results for the macroscopic properties are validated using previously published results. For unsteady flows, it is found that one unit cell is not enough to represent all structures of the fluid flow which substantially impacts the permeability and dispersive properties of the porous bed. In the steady region, a single unit cell is shown to accurately represent the fluid flow across all cases studied


Sign in / Sign up

Export Citation Format

Share Document