ROUTING BALANCED COMMUNICATIONS ON HAMILTON DECOMPOSABLE NETWORKS

2004 ◽  
Vol 14 (03n04) ◽  
pp. 377-385 ◽  
Author(s):  
LADISLAV STACHO ◽  
JOZEF ŠIRÁŇ ◽  
SANMING ZHOU

In [10] the authors proved upper bounds for the arc-congestion and wave-length number of any permutation demand on a bidirected ring. In this note, we give generalizations of their results in two directions. The first one is that instead of considering only permutation demands we consider any balanced demand, and the second one is that instead of the ring network we consider any Hamilton decomposable network. Thus, we obtain upper bounds (which are best possible in general) for the arc-congestion and wavelength number of any balanced demand on a Hamilton decomposable network. As a special case, we obtain upper bounds on arc- and edge-forwarding indices of Hamilton decomposable networks that are in many cases better than the known ones.

2010 ◽  
Vol 10 (5&6) ◽  
pp. 361-376
Author(s):  
J. Kempe ◽  
O. Regev ◽  
F. Unger ◽  
R. de Wolf

We prove new upper bounds on the tolerable level of noise in a quantum circuit. We consider circuits consisting of unitary $k$-qubit gates each of whose input wires is subject to depolarizing noise of strength $p$, as well as arbitrary one-qubit gates that are essentially noise-free. We assume that the output of the circuit is the result of measuring some designated qubit in the final state. Our main result is that for $p>1-\Theta(1/\sqrt{k})$, the output of any such circuit of large enough depth is essentially independent of its input, thereby making the circuit useless. For the important special case of $k=2$, our bound is $p>35.7\%$. Moreover, if the only allowed gate on more than one qubit is the two-qubit CNOT gate, then our bound becomes $29.3\%$. These bounds on $p$ are numerically better than previous bounds, yet are incomparable because of the somewhat different circuit model that we are using. Our main technique is the use of a Pauli basis decomposition, in which the effects of depolarizing noise are very easy to describe.


2008 ◽  
Vol 45 (2) ◽  
pp. 498-512 ◽  
Author(s):  
Joel C. Miller

We consider an infectious disease spreading along the edges of a network which may have significant clustering. The individuals in the population have heterogeneous infectiousness and/or susceptibility. We define the out-transmissibility of a node to be the marginal probability that it would infect a randomly chosen neighbor given its infectiousness and the distribution of susceptibility. For a given distribution of out-transmissibility, we find the conditions which give the upper (or lower) bounds on the size and probability of an epidemic, under weak assumptions on the transmission properties, but very general assumptions on the network. We find similar bounds for a given distribution of in-transmissibility (the marginal probability of being infected by a neighbor). We also find conditions giving global upper bounds on the size and probability. The distributions leading to these bounds are network independent. In the special case of networks with high girth (locally tree-like), we are able to prove stronger results. In general, the probability and size of epidemics are maximal when the population is homogeneous and minimal when the variance of in- or out-transmissibility is maximal.


2021 ◽  
Vol 35 (12) ◽  
pp. 1471-1476
Author(s):  
Houssem Bouchekara ◽  
Mostafa Smail ◽  
Mohamed Javaid ◽  
Sami Shamsah

An Enhanced version of the Salp Swarm Algorithm (SSA) referred to as (ESSA) is proposed in this paper for the optimization design of electromagnetic devices. The ESSA has the same structure as of the SSA with some modifications in order to enhance its performance for the optimization design of EMDs. In the ESSA, the leader salp does not move around the best position with a fraction of the distance between the lower and upper bounds as in the SAA; rather, a modified mechanism is used. The performance of the proposed algorithm is tested on the widely used Loney’s solenoid and TEAM Workshop Problem 22 design problems. The obtained results show that the proposed algorithm is much better than the initial one. Furthermore, a comparison with other well-known algorithms revealed that the proposed algorithm is very competitive for the optimization design of electromagnetic devices.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Wenbo Luo ◽  
Said Jazouli ◽  
Toan Vu-Khanh

AbstractThe creep behavior of a commercial grade polycarbonate was investigated in this study. 10 different constant stresses ranging from 8 MPa to 50 MPa were applied to the specimen, and the resultant creep strains were measured at room temperature. It was found that the creep could be modeled linearly below 15 MPa, and nonlinearly above 15 MPa. Different nonlinear viscoelastic models have been briefly reviewed and used to fit the test data. It is shown that the Findley model is a special case of the Schapery model, and both the Findley model and the simplified multiple integral representation are suitable for properly describing the creep behavior of the polycarbonate investigated in this paper; however, the Findley model fit the data better than the simplified multiple integral with three terms.


2001 ◽  
Vol 68 (5) ◽  
pp. 799-808 ◽  
Author(s):  
G. Maier

Shakedown analysis, and its more classical special case of limit analysis, basically consists of “direct” (as distinct from time-stepping) methods apt to assess safety factors for variable repeated external actions and procedures which provide upper bounds on history-dependent quantities. The issues reviewed and briefly discussed herein are: some recent engineering-oriented and cost-effective methods resting on Koiter’s kinematic theorem and applied to periodic heterogeneous media; recent extensions (after the earlier ones to dynamics and creep) to another area characterized by time derivatives, namely poroplasticity of fluid-saturated porous media. Links with some classical or more consolidated direct methods are pointed out.


2008 ◽  
Vol 60 (3) ◽  
pp. 556-571 ◽  
Author(s):  
Jan Draisma ◽  
Gregor Kemper ◽  
David Wehlau

AbstractWe prove a characteristic free version of Weyl’s theorem on polarization. Our result is an exact analogue ofWeyl’s theorem, the difference being that our statement is about separating invariants rather than generating invariants. For the special case of finite group actions we introduce the concept of cheap polarization, and show that it is enough to take cheap polarizations of invariants of just one copy of a representation to obtain separating vector invariants for any number of copies. This leads to upper bounds on the number and degrees of separating vector invariants of finite groups.


2016 ◽  
Vol 30 (4) ◽  
pp. 622-639 ◽  
Author(s):  
Gaofeng Da ◽  
Maochao Xu ◽  
Shouhuai Xu

In this paper, we propose a novel method for constructing upper bounds of the quasi-stationary distribution of SIS processes. Using this method, we obtain an upper bound that is better than the state-of-the-art upper bound. Moreover, we prove that the fixed point map Φ [7] actually preserves the equilibrium reversed hazard rate order under a certain condition. This allows us to further improve the upper bound. Some numerical results are presented to illustrate the results.


1988 ◽  
Vol 25 (02) ◽  
pp. 355-362 ◽  
Author(s):  
Nader Ebrahimi ◽  
T. Ramalingam

Some concepts of dependence have recently been introduced by Ebrahimi (1987) to explore the structural properties of the hitting times of bivariate processes. In this framework, the special case of univariate processes has curious features. New properties are derived for this case. Some applications to sequential inference and inequalities for Brownian motion and new better than used (NBU) processes are also provided.


2000 ◽  
Vol 55 (5) ◽  
pp. 507-512 ◽  
Author(s):  
I. Gutman ◽  
J. H. Koolen ◽  
V. Moulto ◽  
M. Parac ◽  
T. Soldatović ◽  
...  

Abstract Lower and upper bounds as well as approximate formulas for the total π-electron energy (E) of benzenoid hydrocarbons are deduced, depending only on the number of carbon atoms (n) and number of carbon-carbon bonds (to). These are better than the several previously known (n, m)-type estimates and approximations for E.


1974 ◽  
Vol 6 (2) ◽  
pp. 322-335 ◽  
Author(s):  
Alan Agresti

The class of fractional linear generating functions, one of the few known classes of probability generating functions whose iterates can be explicitly stated, is examined. The method of bounding a probability generating function g (satisfying g″(1) < ∞) by two fractional linear generating functions is used to derive bounds for the extinction time distribution of the Galton-Watson branching process with offspring probability distribution represented by g. For the special case of the Poisson probability generating function, the best possible bounding fractional linear generating functions are obtained, and the bounds for the expected time to extinction of the corresponding Poisson branching process are better than any previously published.


Sign in / Sign up

Export Citation Format

Share Document