Scalable Sender-Based Message Logging Protocol with Little Communication Overhead for Distributed Systems

2019 ◽  
Vol 29 (02) ◽  
pp. 1950005
Author(s):  
Jinho Ahn

The inherent shortcoming of the conventional Sender-Based Message Logging (SBML) protocols is to require additional control message interactions per application message to satisfy the always-no-orphans condition in case of sequential failures. In this paper, a scalable SBML protocol is introduced to lower the communication overhead by handling a sequence of messages consecutively received by each process before sending as a party. The protocol enables the process to delay the update of their receive sequence numbers to their senders until there comes out the first message it is willing to send, and then perform the collective filling out task with each sender requiring only one control message exchange. Experimental results show that our protocol outperforms the previous one in terms of the number of control messages generated.

2019 ◽  
Vol 29 (01) ◽  
pp. 1950004
Author(s):  
Jinho Ahn

This paper proposes an enhanced Fully Informed Communication-Induced Checkpointing (FI-CIC) protocol to highly improve the possibility of detecting Z-cycle free patterns with no extra control message by utilizing the advantageous feature of the broadcast network in an effective way compared with the original FI-CIC protocol. Experimental results show that our protocol outperforms the previous one in terms of the number of forced checkpoints per process.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4391 ◽  
Author(s):  
Juan-Carlos Cuevas-Martinez ◽  
Antonio-Jesus Yuste-Delgado ◽  
Antonio-Jose Leon-Sanchez ◽  
Antonio-Jose Saez-Castillo ◽  
Alicia Triviño-Cabrera

Clustering is presently one of the main routing techniques employed in randomly deployed wireless sensor networks. This paper describes a novel centralized unequal clustering method for wireless sensor networks. The goals of the algorithm are to prolong the network lifetime and increase the reliability of the network while not compromising the data transmission. In the proposed method, the Base Station decides on the cluster heads according to the best scores obtained from a Type-2 Fuzzy system. The input parameters of the fuzzy system are estimated by the base station or gathered from the network with a careful design that reduces the control message exchange. The whole network is controlled by the base station in a rounds-based schedule that alternates rounds when the base station elects cluster heads, with other rounds in which the cluster heads previously elected, gather data from their contributing nodes and forward them to the base station. The setting of the number of rounds in which the Base Station keeps the same set of cluster heads is another contribution of the present paper. The results show significant improvements achieved by the proposal when compared to other current clustering methods.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1673
Author(s):  
Sang-Min Choi ◽  
Jiho Park ◽  
Kiyoung Jang ◽  
Chihyun Park

A distributed system guarantees the acceptance of Byzantine fault tolerance (BFT) for information transmission. Practical BFT (pBFT) and asynchronous BFT (aBFT) are among the various available forms of BFT. Distributed systems generally share information with all participating nodes. After information is shared, the systems reshare it. Thus, ensuring BFT consumes a considerable amount of time. Herein, we propose Decision search protocols that apply the gossip protocol, denoted by DecisionBFT, for distributed networks with guaranteed BFT. Each protocol in DecisionBFT is completely asynchronous and leaderless; it has an eventual consensus but no round-robin or proof-of-work. The core concept of the proposed technology is the consensus structure, which is based on the directed acyclic graph (DAG) and gossip protocol. In the most general form, each node in the algorithm has a set of k neighbors of most preference. When receiving transactions, a node creates and connects an event block with all its neighbors. Each event block is signed by the hashes of the creating node and its k peers. The consensus structure of the event blocks utilizes a DAG, which guarantees aBFT. The proposed framework uses Lamport timestamps and concurrent common knowledge. Further, an example of a Decision search algorithm, based on the gossip protocol DecisionBFT, is presented. The proposed DecisionBFT protocol can reach a consensus when 2/3 of all participants agree to an event block without any additional communication overhead. The DecisionBFT protocol relies on a cost function to identify the k peers and generate the DAG-based consensus structure. By creating a dynamic flag table that stores connection information between blocks, the gossip protocol achieves a consensus in fewer steps than that in the case of the existing aBFT protocol.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xuefei Cao ◽  
Lanjun Dang ◽  
Yingzi Luan ◽  
Wei You

In this paper, we propose a certificateless noninteractive key exchange protocol. No message exchange is required in the protocol, and this feature will facilitate the applications where the communication overhead matters, for example, the communications between the satellites and the earth. The public key certificate is removed as well as the key escrow problem using the certificateless public key cryptosystem. The security of the protocol rests on the bilinear Diffie–Hellman problem, and it could be proved in the random oracle model. Compared with previous protocols, the new protocol reduces the running time by at least 33.0%.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jiping Xiong ◽  
Qinghua Tang

Compressive sensing (CS) has been widely used in wireless sensor networks for the purpose of reducing the data gathering communication overhead in recent years. In this paper, we firstly apply 1-bit compressive sensing to wireless sensor networks to further reduce the communication overhead that each sensor needs to send. Furthermore, we propose a novel blind 1-bit CS reconstruction algorithm which outperforms other state-of-the-art blind 1-bit CS reconstruction algorithms under the settings of WSN. Experimental results on real sensor datasets demonstrate the efficiency of our method.


2018 ◽  
Vol 8 (11) ◽  
pp. 2034
Author(s):  
Masoud Hemmatpour ◽  
Bartolomeo Montrucchio ◽  
Maurizio Rebaudengo

Distributed systems are commonly built under the assumption that the network is the primary bottleneck, however this assumption no longer holds by emerging high-performance RDMA enabled protocols in datacenters. Designing distributed applications over such protocols requires a fundamental rethinking in communication components in comparison with traditional protocols (i.e., TCP/IP). In this paper, communication paradigms in existing systems and new possible paradigms have been investigated. Advantages and drawbacks of each paradigm have been comprehensively analyzed and experimentally evaluated. The experimental results show that writing the requests to server and reading the response presents up to 10 times better performance comparing to other communication paradigms. To further expand the investigation, the proposed communication paradigm has been substituted in a real-world distributed application, and the performance has been enhanced up to seven times.


2010 ◽  
Vol 7 (14) ◽  
pp. 1079-1085 ◽  
Author(s):  
Hideaki Furukawa ◽  
Takaya Miyazawa ◽  
Kenji Fujikawa ◽  
Naoya Wada ◽  
Hiroaki Harai

Sign in / Sign up

Export Citation Format

Share Document