Antinociceptive Profiles of Platycodin D in the Mouse

2004 ◽  
Vol 32 (02) ◽  
pp. 257-268 ◽  
Author(s):  
Seong-Soo Choi ◽  
Eun-Jung Han ◽  
Tae-Hee Lee ◽  
Ki-Jung Han ◽  
Han-Kyu Lee ◽  
...  

Platycodin D (PD), one of several triterpene saponins, was isolated from roots of Platycodon grandiflorum. We previously reported that intracerebroventricular (i.c.v.) administration of PD showed an antinociceptive effect as measured by the tail-flick assay. However, its exact role in the regulation of antinociception in the various types of pain models has not yet been characterized. Thus, we attempted to find antinociceptive profiles of PD in various pain models. PD administered intraperitoneally (i.p.), i.c.v. or intrathecally (i.t.) showed antinociceptive effects in dose-dependent manners as measured by the tail-flick, writhing and formalin tests. In the tail-flick test, PD at the low doses reached the peak after 15 minutes and returned to the control level after 60 minutes. However, higher doses of PD showed a strong antinociception at least for 1 hour. PD administered i.t. showed stronger antinociception than that induced by i.c.v. administration PD in both tail-flick and writhing tests. In the formalin test, PD administered i.p., i.c.v. or i.t. showed antinociceptive effects during both the first (direct nociceptive stimulation) and second (late inflammatory) phases. Pretreatment with naltrexone i.p., i.c.v. or i.t. did not affect PD-induced inhibition of the tail-flick response. Our results suggest that PD shows a strong antinociceptive effect on the tail-flick, writhing and formalin tests, acting on central nervous system. However, PD-induced antinociception may not be mediated by the opioid receptors.

2011 ◽  
Vol 02 (02) ◽  
pp. 130-136 ◽  
Author(s):  
Keshab Raj Paudel ◽  
SK Bhattacharya ◽  
GP Rauniar ◽  
BP Das

ABSTRACT Introduction: Newer anticonvulsants have a neuromodulatory effect on pain perception mechanisms in a hyperexcitable and damaged nervous system. Aim: This study was designed to study the analgesic effects of gabapentin alone and in combination with lamotrigine and topiramate in experimental pain models. Materials and Methods: Adult albino mice (n = 490) weighing 20–30 g and rats (n = 130) weighing 100–200 g were injected intraperitoneally with gabapentin, lamotrigine, and topiramate alone and in different dose combinations. The hot-plate method, tail-flick method, capsaicin-induced mechanical hyperalgesia, and formalin assay were used to assess the antinociceptive effects. Results: Of the three antiepileptic drugs, when given separately, gabapentin was more efficacious than either topiramate or lamotrigine in all the pain models. Combination of 25 mg/kg gabapentin with 25 mg/kg topiramate was more efficacious (P <.05) than 50 mg/kg gabapentin alone in the capsaicin-induced mechanical hyperalgesia test. Similarly, 50 mg/kg gabapentin with 50 mg/kg topiramate or 5 mg/kg lamotrigine was more efficacious (P <.05) than 50 or 100 mg/kg gabapentin alone in late-phase formalin-induced behaviors. Conclusions: Combination of gabapentin with either lamotrigine or topiramate produced better results than gabapentin alone in capsaicin-induced mechanical hyperalgesia test and in late-phase formalin-induced behaviors.


2009 ◽  
Vol 111 (6) ◽  
pp. 1356-1364 ◽  
Author(s):  
Tuomas O. Lilius ◽  
Pekka V. Rauhala ◽  
Oleg Kambur ◽  
Eija A. Kalso

Background Opioid analgesics are effective in relieving chronic pain, but they have serious adverse effects, including development of tolerance and dependence. Ibudilast, an inhibitor of glial activation and cyclic nucleotide phosphodiesterases, has shown potential in the treatment of neuropathic pain and opioid withdrawal. Because glial cell activation could also be involved in the development of opioid tolerance in rats, the authors studied the antinociceptive effects of ibudilast and morphine in different models of coadministration. Methods Antinociception was assessed using male Sprague- Dawley rats in hot plate and tail-flick tests. The effects of ibudilast on acute morphine-induced antinociception, induction of morphine tolerance, and established morphine tolerance were studied. Results Systemic ibudilast produced modest dose-related antinociception and decreased locomotor activity at the studied doses of 2.5-22.5 mg/kg. The highest tested dose of 22.5 mg/kg produced 52% of the maximum possible effect in the tail-flick test. It had an additive antinociceptive effect when combined with systemic morphine. Coadministration of ibudilast with morphine did not attenuate the development of morphine tolerance. However, in morphine-tolerant rats, ibudilast partly restored morphine-induced antinociception. Conclusions Ibudilast produces modest antinociception, and it is effective in restoring but not in preventing morphine tolerance. The mechanisms of the effects of ibudilast should be better understood before it is considered for clinical use.


2019 ◽  
Vol 87 (3) ◽  
pp. 18
Author(s):  
Jing Hui Feng ◽  
Hee Jung Lee ◽  
Set Byeol Kim ◽  
Jeon Sub Jung ◽  
Soon Sung Lim ◽  
...  

Agrimonia pilosa Ledeb. produces an antinociceptive effect in ICR mice in both chemically induced and thermal pain models. In the present study, we examined the antinociceptive effects of single components isolated from Agrimonia pilosa Ledeb. (AP) extract in ICR mice. Three active compounds isolated from AP, including rutin, luteolin-7-O-glucuronide, and apigenin-7-O-glucuronide, were isolated and identified by comparing EI-MS, 1H-, 13C-NMR, and UV. We studied the antinociceptive effects of three single components administered orally at doses of 10 and 20 mg/kg in monosodium urate (MSU)-treated pain model as measured by von Frey test. Among these compounds, apigenin-7-O-glucuronide was more effective in the production of antinociceptive effects. We further characterized the antinociceptive effects and possible mechanisms of apigenin-7-O-glucuronide in writhing and formalin tests. Oral administration of Apigenin-7-O-glucuronide caused a reduction in the number of writhing and effectively reduced the pain behavior observed during the second phase of the formalin test in a dose-dependent manner. In addition, the pretreatment of yohimbine instead of naloxone or methysergide attenuated apigenin-7-O-glucuronide-induced antinociception in the writhing test. Moreover, apigenin-7-O-glucuronide caused reduction in the expression of p-P38, p-CREB, and p-mTOR induced by formalin injection. Our results indicate that apigenin-7-O-glucuronide shows an antinociceptive effect in various pain models. In addition, spinal α2-adrenergic receptors appear to be involved in the production of antinociception induced by apigenin-7-O-glucuronide. Furthermore, the antinociceptive effect of apigenin-7-O-glucuronide appears to be mediated by reduction in the expression of p-P38, p-CREB and p-mTOR levels in the spinal cord.


Drug Research ◽  
2019 ◽  
Vol 69 (10) ◽  
pp. 572-578 ◽  
Author(s):  
Hugo F. Miranda ◽  
Viviana Noriega ◽  
Fernando Sierralta ◽  
Paula Poblete ◽  
Nicolas Aranda ◽  
...  

AbstractThe principal mechanism of action of non-steroidal anti-inflammatory drugs (NSAIDs) is the inhibition of ciclooxigenases. In this study was evaluated if NSAIDs could induce antinociceptive differences according to the type of murine pain model. Male mice were injected intraperitoneally with meloxicam, diclofenac, piroxicam, metamizol, ibuprofen, naproxen and paracetamol in the writhing, tail flick and formalin orofacial tests and dose-response were analyzed to obtain the ED50 of each drugs. Administration of NSAIDs produced in a dose-dependent antinociception with different potency in the tests. The relative potency of NSAIDs among the tests shows a value of 5.53 in the orofacial formalin test in phase I and 6.34 in phase II between meloxicam and paracetamol; of 7.60 in the writhing test between meloxicam and paracetamol and of 8.46 in the tail flick test between ibuprofen and paracetamol. If the comparison is made for each NSAID in the different tests, the minimum value was 0.01 for between writhing and phase II of the orofacial formalin. Meanwhile, the highest power ratio was 11.71 for diclofenac between writhing and tail flick tests. In conclusion, the results suggests that intraperitoneal NSAIDs administration induce antinociceptive activity depending on the type of pain. The results support that NSAIDs administration, induce a wide variety of antinociceptive effect, depending on the type of pain. This suggest the participation of different mechanisms of action that can be added to the simple inhibition of COXs controlled by NSAIDs.


Author(s):  
Л.В. Кузнецова ◽  
М.Н. Карпова ◽  
Н.В. Клишина ◽  
М.Л. Кукушкин

Цель исследования - изучение дозозависимого эффекта мультимодального препарата цитиколина на моделях острой боли у крыс линии Вистар. Методы. Оценку изменения индивидуальной болевой чувствительности у животных проводили с помощью 2 стандартных тестов: «Tail flick» и «Hot plate». Проведено 2 серии опытов. В 1-й и 2-й сериях опытов определяли пороги болевой чувствительности (ПБЧ) у животных до и через 1 час после внутрибрюшинного введения цитиколина в дозах 500 и 1000 мг/кг. Результаты. Введение цитиколин в дозе 500 мг/кг оказывает антиноцицептивное действие: ПБЧ повышался по тестам Hot рlate и Hot рlate. Увеличение дозы цитиколина до 1000 мг/кг не оказывало более выраженного антиноцицептивного действия. Заключение. Введение цитиколина оказывает антиноцицептивные эффекты у крыс, что может свидетельствовать о холинергической активации, индуцированной цитиколином. The aim was to study the dose-dependent effect of the multimodal drug citicoline on models of acute pain in Wistar rats. Methods. Assessment of changes in individual pain sensitivity was performed using 2 standard tests, Tail Flick and Hot Plate. Two series of experiments were carried out. In the 1st and 2nd series of experiments, pain thresholds (PS) were determined prior to and one hour after intraperitoneal citicoline administration at doses of 500 and 1000 mg/kg. Results. Administration of citicoline 500 mg/kg had an antinociceptive effect: PS increased both in the Tail Flick and in the Hot Plate tests. Increasing the citicoline dose to 1000 mg/kg did not exert a more pronounced antinociceptive effect. Conclusion. Citicoline exerts antinociceptive effects in rats, which may indicate the cholinergic activation induced by citicoline.


1998 ◽  
Vol 89 (6) ◽  
pp. 1455-1463 ◽  
Author(s):  
Yoji Saito ◽  
Megumi Kaneko ◽  
Yumiko Kirihara ◽  
Shinichi Sakura ◽  
Yoshihiro Kosaka

Background Synergistic antinociception of opioids and local anesthetics has been established in bolus injections but not in long-term use. The somatic and visceral antinociceptive effects of intrathecally infused morphine or lidocaine were characterized, and the nature of the interaction of those agents in rats was evaluated. Methods Intrathecal catheters were implanted in rats. Morphine (0.3 to 10 microg x kg(-1) x h(-1)), lidocaine (30-1,000 microg x kg(-1) x h(-1)), a combination of those, or saline was infused intrathecally at a constant rate of 1 microl/h for 6 days. The tail flick and colorectal distension tests were used to measure the somatic and visceral antinociceptive effects, respectively. Nociceptive tests and motor function tests were repeated on days 1, 2, 3, 4, and 6. Isobolographic analysis was performed on the results of the tail flick test to determine the magnitude of the interaction. Results Intrathecally infused morphine produced dose-dependent antinociceptive effects in both the tail flick and the colorectal distension tests. Morphine showed a lower peak percentage maximum possible effect (%MPE) in the colorectal distension test than in the tail flick test. Intrathecal lidocaine also produced dose-dependent antinociceptive effects. Lidocaine infusion at 1,000 microg x kg(-1) x h(-1) caused motor impairment. Coinfusion of morphine 0.3 microg x kg(-1) x h(-1) and lidocaine 200 microg x kg(-1) x h(-1), which had no effects by themselves, significantly increased the percentage maximum possible effects (P &lt; 0.01). Coinfused lidocaine potentiated the duration and the magnitude of morphine antinociception. Isobolographic analysis of the tail flick test on day 1 showed a synergistic interaction between morphine and lidocaine. Conclusions Morphine and lidocaine intrathecally coadministered synergistically potentiated the antinociceptive effects of each other. That coinfusion dramatically potentiated visceral antinociception, whereas the infusion of morphine alone showed little visceral antinociception.


Cephalalgia ◽  
2015 ◽  
Vol 35 (12) ◽  
pp. 1065-1076 ◽  
Author(s):  
R Greco ◽  
T Bandiera ◽  
AS Mangione ◽  
C Demartini ◽  
F Siani ◽  
...  

Background Systemic nitroglycerin (NTG) activates brain nuclei involved in nociceptive transmission as well as in neuroendocrine and autonomic functions in rats. These changes are considered relevant for migraine because NTG consistently provokes spontaneous-like migraine attacks in migraineurs. Several studies have suggested a relationship between the endocannabinoid levels and pain mediation in migraine. URB937, a peripheral inhibitor of fatty acid amide hydrolase (FAAH)—the enzyme that degrades anandamide, produces analgesia in animal models of pain, but there is no information on its effects in migraine. Aim We evaluated whether URB937 alters nociceptive responses in the animal model of migraine based on NTG administration in male rats, using the tail flick test and the plantar and orofacial formalin tests, under baseline conditions and after NTG administration. Furthermore, we investigated whether URB937 affects NTG-induced c-Fos expression in the brain. Results During the tail flick test, URB937 showed an antinociceptive effect in baseline conditions and it blocked NTG-induced hyperalgesia. URB937 also proved effective in counteracting NTG-induced hyperalgesia during both the plantar and orofacial formalin tests. Mapping of brain nuclei activated by NTG indicates that URB937 significantly reduces c-Fos expression in the nucleus trigeminalis caudalis and the locus coeruleus. Conclusions The data suggest that URB937 is capable of changing, probably via indirect mechanisms, the functional status of central structures that are important for pain transmission in an animal model of migraine.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Nana Tsiklauri ◽  
Ivliane Nozadze ◽  
Gulnazi Gurtskaia ◽  
Merab G. Tsagareli

Emotional distress is the most undesirable feature of painful experience. Numerous studies have demonstrated the important role of the limbic system in the affective-motivational component of pain. The purpose of this paper was to examine whether microinjection of nonsteroidal anti-inflammatory drugs (NSAIDs), Clodifen, Ketorolac, and Xefocam, into the dorsal hippocampus (DH) leads to the development of antinociceptive tolerance in male rats. We found that microinjection of these NSAIDs into the DH induces antinociception as revealed by a latency increase in the tail-flick (TF) and hot plate (HP) tests compared to controls treated with saline into the DH. Subsequent tests on consecutive three days, however, showed that the antinociceptive effect of NSAIDs progressively decreased, suggesting tolerance developed to this effect of NSAIDs. Both pretreatment and posttreatment with the opioid antagonist naloxone into the DH significantly reduced the antinociceptive effect of NSAIDs in both pain models. Our data indicate that microinjection of NSAIDs into the DH induces antinociception which is mediated via the opioid system and exhibits tolerance.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4172
Author(s):  
Sarinee Leksiri ◽  
Hasriadi Hasriadi ◽  
Peththa Wadu Dasuni Wasana ◽  
Opa Vajragupta ◽  
Pornchai Rojsitthisak ◽  
...  

Analgesic drugs in a combination-form can achieve greater efficacy with lesser side effects compared to either drug alone. The combination of drugs acting at different targets or mechanisms of action has been recognized as an alternative approach for achieving optimal analgesia. In this study, the analgesic effects of pregabalin (30, 60, 100, 200 mg/kg), curcumin (15, 30, 60, 100, 120 mg/kg), and 1:1 fixed-dose ratio of the pregabalin-curcumin combination were assessed using two acute nociceptive pain models, the acetic acid-induced writhing and tail-flick tests in mice. The pregabalin-curcumin combination produced a dose-dependent decrease in mean of writhes and an increase in the percentage of antinociception by the acetic acid-induced writhing test. In the tail-flick test, the combination also showed an improvement in antinociception indicated by the tail-flick latency, % antinociception, and area under the curve (AUC). Isobolographic analysis of interactions demonstrated a significant synergistic interaction effect between pregabalin and curcumin in both acute nociceptive pain models with the experimental ED50 below the predicted additive line and the combination index < 1. These findings demonstrate that the combination of pregabalin and curcumin exhibits a synergistic interaction in mouse models of acute nociceptive pain.


Sign in / Sign up

Export Citation Format

Share Document