GABA- and Glycine-Mimetic Responses of Linalool on the Substantia Gelatinosa of the Trigeminal Subnucleus Caudalis in Juvenile Mice: Pain Management through Linalool-Mediated Inhibitory Neurotransmission

Author(s):  
Thao Nguyen Thi Phuong ◽  
Seon Hui Jang ◽  
Santosh Rijal ◽  
Woo Kwon Jung ◽  
Junghyun Kim ◽  
...  

Linalool, a major odorous constituent in essential oils extracted from lavender, is known to have a wide range of physiological effects on humans including pain management. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is involved in transmission of orofacial nociceptive responses through thin myelinated A[Formula: see text] and unmyelinated C primary afferent fibers. Up to date, the orofacial antinociceptive mechanism of linalool concerning SG neurons of the Vc has not been completely clarified yet. To fill this knowledge gap, whole-cell patch-clamp technique was used in this study to examine how linalool acted on SG neurons of the Vc in mice. Under a high chloride pipette solution, non-desensitizing and repeatable linalool-induced inward currents were preserved in the presence of tetrodotoxin (a voltage-gated Na[Formula: see text]channel blocker), CNQX (a non-NMDA glutamate receptor antagonist), and DL-AP5 (an NMDA receptor antagonist). However, linalool-induced inward currents were partially suppressed by picrotoxin (a GABA[Formula: see text] receptor antagonist) or strychnine (a glycine receptor antagonist). These responses were almost blocked in the presence of picrotoxin and strychnine. It was also found that linalool exhibited potentiation with GABA- and glycine-induced responses. Taken together, these data show that linalool has GABA- and glycine-mimetic effects, suggesting that it can be a promising target molecule for orofacial pain management by activating inhibitory neurotransmission in the SG area of the Vc.

2013 ◽  
Vol 41 (05) ◽  
pp. 1043-1051 ◽  
Author(s):  
Hua Yin ◽  
Dong Hyu Cho ◽  
Soo Joung Park ◽  
Seong Kyu Han

The plant Withania somnifera (WS), also known as Ashwagandha, has been used widely in traditional medicine systems in India and Nepal (Ayurveda), and has been accepted to cure various ailments. In this study, the whole-cell patch clamp technique was performed to examine the mechanism of action of WS on the SG neurons of the Vc from mouse brainstem slices. In whole-cell patch clamp mode, methanol extract of Withania somnifera (mWS) induced short-lived and repeatable inward currents in all SG neurons tested (31.3±8.51 pA, n = 7) using a high chloride pipette solution. The mWS-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na + channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, AP5, an NMDA receptor antagonist and strychnine, a glycine receptor antagonist. The mWS induced currents were blocked by picrotoxin, a GABAA receptor antagonist. These results show that mWS has an inhibitory effects on SG neurons of the Vc through GABAA receptor-mediated activation of chloride ion channels, indicating that mWS contains compounds with sedative effects on the central nervous system. These results also suggest that mWS may be a potential target for modulating orofacial pain processing.


2016 ◽  
Vol 44 (02) ◽  
pp. 389-400 ◽  
Author(s):  
Hua Yin ◽  
Janardhan Prasad Bhattarai ◽  
Sun Mi Oh ◽  
Soo Joung Park ◽  
Dong Kuk Ahn ◽  
...  

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) receives nociceptive afferent inputs from thin-myelinated A[Formula: see text] fibers and unmyelinated C fibers and has been shown to be involved in the processing of orofacial nociceptive information. Scutellaria baicalensis Georgi (Huang-Qin, SbG), one of the 50 fundamental herbs of Chinese herbology, has been used historically as anti-inflammatory and antineoplastic medicine. Baicalin, one of the major compounds of SbG, has been reported to have neuroprotective, anti-inflammatory and analgesic effects. However, the receptor type activated by baicalin and its precise action mechanism on the SG neurons of Vc have not yet been studied. The whole-cell patch clamp technique was performed to examine the ion channels activated by baicalin on the SG neurons of Vc. In high Cl[Formula: see text] pipette solution, the baicalin (300[Formula: see text][Formula: see text]M) induced repeatable inward currents ([Formula: see text][Formula: see text]pA, [Formula: see text]) without desensitization on all the SG neurons tested. Further, the inward currents showed a concentration (0.1–3[Formula: see text]mM) dependent pattern. The inward current was sustained in the presence of tetrodotoxin (0.5[Formula: see text][Formula: see text]M), a voltage sensitive Na[Formula: see text] channel blocker. In addition, baicalin-induced inward currents were reduced in the presence of picrotoxin (50[Formula: see text][Formula: see text]M), a GABAA receptor antagonist, flumazenil (100[Formula: see text][Formula: see text]M), a benzodiazepine-sensitive GABAA receptor antagonist, and strychnine (2[Formula: see text][Formula: see text]M), a glycine receptor antagonist, respectively. These results indicate that baicalin has inhibitory effects on the SG neurons of the Vc, which are due to the activation of GABAA and/or the glycine receptor. Our results suggest that baicalin may be a potential target for orofacial pain modulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Thi Thanh Hoang Nguyen ◽  
Janardhan Prasad Bhattarai ◽  
Soo Joung Park ◽  
Seong Kyu Han

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC) with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10 μM to 3 mM) showed a concentration dependent depolarizations and inward currents with the EC50of 84.3 μM and 723 μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 μM) and almost completely blocked by strychnine (2 μM), suggesting that taurine-mediated responses are via glycine receptor (GlyR) activation. In addition, taurine (1 mM) activated extrasynaptic GABAAreceptor (GABAAR)-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABAARs on the SG neurons.


1994 ◽  
Vol 72 (3) ◽  
pp. 1260-1269 ◽  
Author(s):  
E. D. Cohen ◽  
Z. J. Zhou ◽  
G. L. Fain

1. We studied the receptor pharmacology of the ligand-gated currents of ON- and OFF- alpha and beta ganglion cells in a cat retinal slice preparation using the whole cell recording variation of the patch-clamp technique. Cat retinal slices were cut in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer and incubated in a bicarbonate-buffered solution. Ganglion cells were voltage clamped at -70 mV in HEPES-buffered Ringer solution. The pipette solution contained a low concentration of Cl- to distinguish mixed cationic from Cl(-)-mediated conductances, and Lucifer yellow (0.5%) was included for identification of the cell type. 2. In Ringer solution containing 1.2 mM Mg2+, current-voltage (I-V) curves of responses to the excitatory amino acid agonist (EAA) N-methyl-D-aspartate (NMDA) (200 microM) revealed a J-shaped function. In Mg(2+)-free Ringer solution containing 200 microM Cd2+ to block synaptic transmission, NMDA (200 microM) elicited an inward current 5-8 times larger at -70 mV. In both conditions I-V curves of the NMDA-induced currents reversed near 0 mV. These results suggest that there are NMDA EAA receptors present directly on the dendrites of alpha and beta ganglion cells. Responses to NMDA were blocked by +/- 2-amino-7-phosphonoheptanoic acid (AP7) (200 microM). 3. In Ringer solution containing 200-1,000 microM Cd2+ to block synaptic transmission, both ON- and OFF- alpha and beta cells responded to kainic acid (10-50 microM), alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) (20-70 microM), and quisqualic acid (0.1-30 microM) with inward currents that reversed near 0 mV. These responses were blocked by the quinoxaline EAA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 microM). The metabotropic agonists 1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) (25 microM) and L-2-amino-4-phosphonobutyric acid (L-APB) (50 microM) and L-2-amino-4-phosphonobutyric acid (L-APB) (50 microM) in the presence of Cd2+ evoked little or no response for all cells tested. 4. In the presence of Cd2+, alpha and beta cells responded to gamma-amino-butyric acid (GABA) (200 microM) and glycine (200 microM) with inward currents that reversed near -35 mV, the calculated chloride equilibrium potential Ecl. Responses to GABA and glycine were both strongly desensitizing. (+)Bicuculline methyl chloride (20 microM) blocked an average of 90% of the inward current evoked by 200 microM GABA on all ganglion cell types.(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 84 (4) ◽  
pp. 2171-2174 ◽  
Author(s):  
Keita Narikawa ◽  
Hidemasa Furue ◽  
Eiichi Kumamoto ◽  
Megumu Yoshimura

To know a functional role of inhibitory synaptic responses in transmitting noxious and innoxious information from the periphery to the rat spinal dorsal horn, we examined inhibitory postsynaptic currents (IPSCs) elicited in substantia gelatinosa (SG) neurons by mechanical stimuli applied to the skin using the newly developed in vivo patch-clamp technique. In the majority (80%) of SG neurons examined, a brush stimulus applied to the ipsilateral hind limb produced a barrage of IPSCs that persisted during the stimulus, while a pinch stimulus evoked IPSCs only at its beginning and end. The pinch-evoked IPSCs may have been caused by a touch that occurs at the on/off time of the pinch. The evoked IPSCs were blocked by either a glycine-receptor antagonist, strychnine (4 μM), or a GABAA-receptor antagonist, bicuculline (20 μM). All SG neurons examined received inhibitory inputs from a wide area throughout the thigh and lower leg. When IPSCs were examined together with excitatory postsynaptic currents (EPSCs) in the same neurons, a brush evoked a persistent activity of both IPSCs and EPSCs during the stimulus while a pinch evoked such an activity of EPSCs but not IPSCs. It is suggested that innoxious mechanical stimuli activate a GABAergic or glycinergic circuitry in the spinal dorsal horn. This inhibitory transmission may play an important role in the modulation of noxious information in the SG.


1998 ◽  
Vol 45 (2) ◽  
pp. 311-326 ◽  
Author(s):  
A Ayar ◽  
N M Thatcher ◽  
U Zehavi ◽  
D R Trentham ◽  
R H Scott

The ability of dihydrosphingosine to release Ca2+ from intracellular stores in neurones was investigated by combining the whole cell patch clamp technique with intracellular flash photolysis of caged, N-(2-nitrobenzyl)dihydrosphingosine. The caged dihydrosphingosine (100 microM) was applied to the intracellular environment via the CsCl-based patch pipette solution which also contained 0.3% dimethylformamide and 2 mM dithiothreitol. Cultured dorsal root ganglion neurones from neonatal rats were voltage clamped at -90 mV and inward whole cell Ca2+-activated currents were recorded in response to intracellular photorelease of dihydrosphingosine. Intracellular photorelease of dihydrosphingosine (about 5 microM) was achieved using a Xenon flash lamp. Inward Ca2+-activated currents were evoked in 50 out of 57 neurones, the mean delay to current activation following photolysis was 82+/-13 s. The responses were variable with neurones showing transient, oscillating or sustained inward currents. High voltage-activated Ca2+ currents evoked by 100 ms voltage step commands to 0 mV were not attenuated by photorelease of dihydrosphingosine. Controls showed that alone a flash from the Xenon lamp did not activate currents, and that the unphotolysed caged dihydrosphingosine, and intracellular photolysis of 2-(2-nitrobenzylamino) propanediol also did not evoke responses. The dihydrosphingosine current had a reversal potential of -11+/-3 mV (n = 11), and was carried by two distinct Cl- and cation currents which were reduced by 85% and about 20% following replacement of monovalent cations with N-methyl-D-glucamine or application of the Cl- channel blocker niflumic acid (10 microM) respectively. The responses to photoreleased dihydrosphingosine were inhibited by intracellular application of 20 mM EGTA, 10 microM ryanodine or extracellular application of 10 microM dantrolene, but persisted when Ca2+ free saline was applied to the extracellular environment. Intracellular application of uncaged dihydrosphingosine evoked responses which were attenuated by photolysis of the caged Ca2+ chelator Diazo-2. Experiments also suggested that extracellular application of dihydrosphingosine can activate membrane conductances. We conclude that dihydrosphingosine directly or indirectly mobilises Ca2+ from ryanodine-sensitive intracellular stores in cultured sensory neurones.


1996 ◽  
Vol 270 (3) ◽  
pp. F391-F397 ◽  
Author(s):  
L. M. Satlin ◽  
L. G. Palmer

Net Na+ absorption in microperfused rabbit cortical collecting ducts (CCDs) is low during the 1st wk of postnatal life, increasing substantially thereafter [L. M. Satlin. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F57-F65, 1994]. To establish whether the low rate of Na+ absorption observed immediately after birth is due to a low apical Na+ permeability of the neonatal principal cell, we used the patch-clamp technique in split-open CCDs isolated from maturing rabbits to estimate conductance, number (N), and open probability (Po) of apical Na+ channels in principal cells. With LiCl in the pipette and a NaCl or potassium gluconate solution, warmed to 37 degrees C, in the bath, inward currents with a conductance of approximately 11 pS (n = 23) were observed in 17% of cell-attached patches at 1 wk, 41% of patches at 2 wk, and 43% of patches at 5 wk. The mean N per patch in the 1st wk (0.22 +/- 0.09; n = 36) was significantly less than that observed in the 2nd (1.38 +/- 0.39; n = 34) and 5th (1.24 +/- 0.37; n = 21) wk of life. Po, studied at positive pipette voltages, was significantly lower in the 1st wk (0.085 +/- 0.035; n = 5) than in the 2nd wk (0.345 +/- 0.063; n = 9) and 5th wk (0.291 +/- 0.058; n = 4). To confirm that the 11-pS channel represented the amiloride-sensitive apical Na+ channel, cell-attached patches in CCDs isolated from 2-wk-old rabbits were studied with 0.5 microM amiloride added to the LiCl pipette solution. Amiloride led to > 90% reductions in mean open and closed times of the 11-pS conductance, consistent with blockade of the channel. These data indicate that N and Po of apical amiloride-sensitive Na+ channels in principal cells increase significantly after birth.


2003 ◽  
Vol 89 (1) ◽  
pp. 257-264 ◽  
Author(s):  
Noriaki Matsumoto ◽  
Eiichi Kumamoto ◽  
Hidemasa Furue ◽  
Megumu Yoshimura

An ischemia-induced change in glutamatergic transmission was investigated in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by use of the whole cell patch-clamp technique; the ischemia was simulated by superfusing an oxygen- and glucose-free medium (ISM). Following ISM superfusion, 21 of 37 SG neurons tested produced an outward current (23 ± 4 pA at a holding potential of −70 mV), which was followed by a slow and subsequent rapid inward current; the remaining neurons had only inward currents. During such a change in holding currents, spontaneous excitatory postsynaptic currents (EPSCs) were remarkably decreased in a frequency with time (half-decay time of the frequency: about 65 s). The frequency of spontaneous EPSCs was reduced to 28 ± 13% ( n = 37) of the control level during the generation of the slow inward current (about 4 min after the beginning of ISM superfusion) without a change in the amplitude of spontaneous EPSCs. When ISM was superfused together with either bicuculline (10 μM) or CGP35348 (20 μM; GABAA and GABAB receptor antagonists, respectively), spontaneous EPSC frequency reduced by ISM recovered to the control level and then the frequency markedly increased [by 325 ± 120% ( n = 22) and 326 ± 91% ( n = 17), respectively, 4 min after ISM superfusion]; this alteration in the frequency was not accompanied by a change in spontaneous EPSC amplitude. Superfusing TTX (1 μM)-containing ISM resulted in a similar recovery of spontaneous EPSC frequency and following increase (by 328 ± 26%, n = 12) in the frequency; strychnine (1 μM) did not affect ISM-induced changes in spontaneous EPSC frequency ( n = 5). It is concluded that the ischemic simulation inhibits excitatory transmission to SG neurons, whose action is in part mediated by the activation of presynaptic GABAAand GABAB receptors, probably due to GABA released from interneurons as a result of an ischemia-induced increase in neuronal activities. This action might protect SG neurons from an excessive excitation mediated by l-glutamate during ischemia.


1997 ◽  
Vol 110 (4) ◽  
pp. 341-354 ◽  
Author(s):  
Joseph A. Tabcharani ◽  
Paul Linsdell ◽  
John W. Hanrahan

Permeation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channels by halide ions was studied in stably transfected Chinese hamster ovary cells by using the patch clamp technique. In cell-attached patches with a high Cl− pipette solution, the CFTR channel displayed outwardly rectifying currents and had a conductance near the membrane potential of 6.0 pS at 22°C or 8.7 pS at 37°C. The current–voltage relationship became linear when patches were excised into symmetrical, N-tris(hydroxymethyl)methyl-2-aminomethane sulfonate (TES)-buffered solutions. Under these conditions, conductance increased from 7.0 pS at 22°C to 10.9 pS at 37°C. The conductance at 22°C was ∼1.0 pS higher when TES and HEPES were omitted from the solution, suggesting weak, voltage-independent block by pH buffers. The relationship between conductance and Cl− activity was hyperbolic and well fitted by a Michaelis-Menten–type function having a Km of ∼38 mM and maximum conductance of 10 pS at 22°C. Dilution potentials measured with NaCl gradients indicated high anion selectivity (PNa/PCl = 0.003–0.028). Biionic reversal potentials measured immediately after exposure of the cytoplasmic side to various test anions indicated PI (1.8) > PBr (1.3) > PCl (1.0) > PF (0.17), consistent with a “weak field strength” selectivity site. The same sequence was obtained for external halides, although inward F− flow was not observed. Iodide currents were protocol dependent and became blocked after 1–2 min. This coincided with a large shift in the (extrapolated) reversal potential to values indicating a greatly reduced I−/Cl− permeability ratio (PI/PCl < 0.4). The switch to low I− permeability was enhanced at potentials that favored Cl− entry into the pore and was not observed in the R347D mutant, which is thought to lack an anion binding site involved in multi-ion pore behavior. Interactions between Cl− and I− ions may influence I− permeation and be responsible for the wide range of PI/PCl ratios that have been reported for the CFTR channel. The low PI/PCl ratio usually reported for CFTR only occurred after entry into an altered permeability state and thus may not be comparable with permeability ratios for other anions, which are obtained in the absence of iodide. We propose that CFTR displays a “weak field strength” anion selectivity sequence.


1996 ◽  
Vol 270 (6) ◽  
pp. G932-G938 ◽  
Author(s):  
J. Jury ◽  
K. R. Boev ◽  
E. E. Daniel

Single smooth muscle cells from the opossum body circular muscle were isolated and whole cell currents were characterized by the whole cell patch-clamp technique. When the cells were held at -50 mV and depolarized to 70 mV in 20-mV increments, initial small inactivating inward currents were evoked (-30 to 30 mV) followed by larger sustained outward currents. Depolarization from a holding potential of -90 mV evoked an initial fast inactivating outward current sensitive to 4-aminopyridine but not to high levels of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). The outward currents reversed near K+ equilibrium potential and were abolished when KCl was replaced by CsCl in the pipette solution. The sustained outward current was inhibited by quinine and cesium. High EGTA in the pipette solution reduced but did not abolish the sustained outward currents, suggesting that both Ca(2+)-dependent and -independent currents were evoked. The nitric oxide (NO)-releasing agents Sin-1 and sodium nitroprusside increased outward K+ currents. High levels of EGTA in the pipette solution abolished the increase in outward current induced by Sin-1. The presence of cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum (SR) Ca2+ pump, blocked the effects of NO-releasing agents. We conclude that NO release activates K+ outward currents in opossum esophagus circular muscle, which may depend on Ca2+ release from the SR stores.


Sign in / Sign up

Export Citation Format

Share Document