TOPOLOGICAL EFFECTS OF INSTANTON DUE TO DEFECTS

2001 ◽  
Vol 16 (29) ◽  
pp. 1863-1869 ◽  
Author(s):  
DUOJE JIA ◽  
YISHI DUAN

A new doublet variable is proposed to decompose non-Abelian gauge field for describing the topological effects of instantons due to the defects in appropriate phase of SU(2) Yang–Mills theory. It is shown that the instanton number can be directly related to the isospin defects of the doublet order parameter and contributed from topological charges of these defects. The θ-term in instanton action is found to be the delta-function form of the doublet and the Lagrangian of instantons in terms of new variables is also presented.

2009 ◽  
Vol 24 (18n19) ◽  
pp. 3630-3637 ◽  
Author(s):  
A. SULAIMAN ◽  
A. FAJARUDIN ◽  
T. P. DJUN ◽  
L. T. HANDOKO

The magnetofluid unification is constructed using lagrangian approach by imposing a non-Abelian gauge symmetry to the matter inside the fluid. The model provides a general description for relativistic fluid interacting with either Abelian or non-Abelian gauge field. The differences with the hybrid magnetofluid model are discussed, and some physical consequences of this formalism are briefly worked out.


2016 ◽  
Vol 31 (07) ◽  
pp. 1630007
Author(s):  
R. P. Crease

The phrase “Yang–Mills” can be used (1) to refer to the specific theory proposed by Yang and Mills in 1954; or (2) as shorthand for any non-Abelian gauge theory. The 1954 version, physically speaking, had a famous show-stopping defect in the form of what might be called the “Pauli snag,” or the requirement that, in the Lagrangian for non-Abelian gauge theory the mass term for the gauge field has to be zero. How, then, was it possible for (1) to turn into (2)? What unfolding sequence of events made this transition possible, and what does this evolution say about the nature of theories in physics? The transition between (1) and (2) illustrates what historians and philosophers a century from now might still find instructive and stimulating about the development of Yang–Mills theory.


2015 ◽  
Vol 30 (34) ◽  
pp. 1530066
Author(s):  
Sau Lan Wu

This article “Discovery of the First Yang–Mills Gauge Particle — The Gluon” is dedicated to Professor Chen Ning Yang. The Gluon is the first Yang–Mills non-Abelian gauge particle discovered experimentally. The Yang–Mills non-Abelian gauge field theory was proposed by Yang and Mills in 1954, sixty years ago. The experimental discovery of the first Yang–Mills non-Abelian gauge particle — the gluon — in the spring of 1979 is summarized, together with some of the subsequent developments, including the role of the gluon in the recent discovery of the Higgs particle.


1998 ◽  
Vol 13 (23) ◽  
pp. 4049-4076 ◽  
Author(s):  
M. QUANDT ◽  
H. REINHARDT

We present a reformulation of SU(2) Yang–Mills theory in the maximal Abelian gauge, where the non-Abelian gauge field components are exactly integrated out at the expense of a new Abelian tensor field. The latter can be treated in a semiclassical approximation and the corresponding saddle point equation is derived. Besides the nontrivial solutions, which are presumably related to nonperturbative interactions for the Abelian gauge field, the equation of motion for the tensor fields allows for a trivial solution as well. We show that the semiclassical expansion around this trivial solution is equivalent to the standard perturbation theory. In particular, we calculate the one-loop β-function for the running coupling constant in this approach and reproduce the standard result.


1980 ◽  
Vol 58 (5) ◽  
pp. 664-665
Author(s):  
Gerry McKeon

A change of variables from the non-Abelian gauge field Aμa(x) to the associated phase factor at a fixed time[Formula: see text]is made in the Yang-Mills Hamiltonian. The result is a Schrödinger-like equation for the quantity U[Γ].


2013 ◽  
Vol 5 (2) ◽  
pp. 184-211 ◽  
Author(s):  
Richárd Forster ◽  
Ágnes Fülöp

Abstract The Yang-Mills fields have an important role in the non- Abelian gauge field theory which describes the properties of the quarkgluon plasma. The real time evolution of the classical fields is given by the equations of motion which are derived from the Hamiltonians to contain the term of the SU(2) gauge field tensor. The dynamics of the classical lattice Yang-Mills equations are studied on a 3 dimensional regular lattice. During the solution of this system we keep the total energy on constant values and it satisfies the Gauss law. The physical quantities are desired to be calculated in the thermodynamic limit. The broadly available computers can handle only a small amount of values, while the GPUs provide enough performance to reach out for higher volumes of lattice vertices which approximates the aforementioned limit.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

A geometrical derivation of Abelian and non- Abelian gauge theories. The Faddeev–Popov quantisation. BRST invariance and ghost fields. General discussion of BRST symmetry. Application to Yang–Mills theories and general relativity. A brief history of gauge theories.


1993 ◽  
Vol 08 (25) ◽  
pp. 2403-2412 ◽  
Author(s):  
AMITABHA LAHIRI

I present the reduction of phase space of the theory of an antisymmetric tensor potential coupled to an Abelian gauge field, using Dirac's procedure. Duality transformations on the reduced phase space are also discussed.


Sign in / Sign up

Export Citation Format

Share Document