A NEUTRINO MASS MODEL WITH REFLECTION SYMMETRY

2004 ◽  
Vol 19 (34) ◽  
pp. 2579-2586 ◽  
Author(s):  
AMBAR GHOSAL

We demonstrate that an SU (2)L× U (1)Y model with the same particle content as Standard Model (SM) and discrete reflection symmetry between second and third generations of leptons gives rise to charged lepton and neutrino mass matrices which can accommodate the present solar, atmospheric, WMAP neutrino experimental results. The model predicts the value of |U13| which could be tested in neutrino factories and the effective Majorana neutrino mass <mee> which is at the lower end of the present experimental value. Neutrino masses are generated through dim=5 operators and the scale of which are constrained by the value of <mee>. If, in future neutrinoless double beta decay experiments namely, MOON, EXO, GENIUS shift the lower bound on <mee> by one order, the present model will fail to accommodate the solar neutrino mixing angle due to LMA solution.

2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Madan Singh

We have studied that the implication of a large value of the effective Majorana neutrino mass in case of neutrino mass matrices has either two equal elements and one zero element (popularly known as hybrid texture) or two equal cofactors and one zero minor (popularly known as inverse hybrid texture) in the flavor basis. In each of these cases, four out of sixty phenomenologically possible patterns predict near maximal atmospheric neutrino mixing angle in the limit of large effective Majorana neutrino mass. This feature remains irrespective of the experimental data on solar and reactor mixing angles. In addition, we have also performed the comparative study of all the viable cases of hybrid and inverse hybrid textures at 3σ CL.


2003 ◽  
Vol 18 (05) ◽  
pp. 743-753 ◽  
Author(s):  
MAHADEV PATGIRI ◽  
N. NIMAI SINGH

An attempt is made to generate the bimaximal mixings of the three species of neutrinos from the textures of the right-handed Majorana neutrino mass matrices. We extend our earlier work in this paper for the generation of the nearly degenerate as well as the inverted hierarchical models of the left-handed Majorana neutrino mass matrices using the non-diagonal textures of the right-handed Majorana neutrino mass matrices and the diagonal form of Dirac neutrino mass matrices, within the framework of the see-saw mechanism in a model independent way. Such Majorana neutrino mass models are important in explaining the recently reported result on the neutrinoless double beta decay (0νββ) experiment, together with the earlier established data on LMA MSW solar and atmospheric neutrino oscillations.


2014 ◽  
Vol 29 (16) ◽  
pp. 1450087
Author(s):  
Teruyuki Kitabayashi ◽  
Naoto Koizumi

We estimate Majorana CP phases for a simple flavor neutrino mixing matrix which has been reported by Qu and Ma. Sizes of Majorana CP phases are evaluated in the study of the neutrinoless double beta decay and a particular leptogenesis scenario. We find the dependence of the physically relevant Majorana CP phase on the mass of lightest right-handed neutrino in the minimal seesaw model and the effective Majorana neutrino mass which is related with the half-life of the neutrinoless double beta decay.


2007 ◽  
Vol 16 (01) ◽  
pp. 1-50 ◽  
Author(s):  
WAN-LEI GUO ◽  
ZHI-ZHONG XING ◽  
SHUN ZHOU

We present a review of neutrino phenomenology in the minimal seesaw model (MSM), an economical and intriguing extension of the Standard Model with only two heavy right-handed Majorana neutrinos. Given current neutrino oscillation data, the MSM can predict the neutrino mass spectrum and constrain the effective masses of the tritium beta decay and the neutrinoless double-beta decay. We outline five distinct schemes to parameterize the neutrino Yukawa-coupling matrix of the MSM. The lepton flavor mixing and baryogenesis via leptogenesis are investigated in some detail by taking account of possible texture zeros of the Dirac neutrino mass matrix. We derive an upper bound on the CP-violating asymmetry in the decay of the lighter right-handed Majorana neutrino. The effects of the renormalization-group evolution on the neutrino mixing parameters are analyzed, and the correlation between the CP-violating phenomena at low and high energies is highlighted. We show that the observed matter-antimatter asymmetry of the Universe can naturally be interpreted through the resonant leptogenesis mechanism at the TeV scale. The lepton-flavor-violating rare decays, such as μ→e+γ, are also discussed in the supersymmetric extension of the MSM.


2013 ◽  
Vol 28 (11) ◽  
pp. 1350032 ◽  
Author(s):  
JOYDEEP CHAKRABORTTY ◽  
MOUMITA DAS ◽  
SUBHENDRA MOHANTY

The vacuum stability condition of the Standard Model (SM) Higgs potential with mass in the range of 124–127 GeV puts an upper bound on the Dirac mass of the neutrinos. We study this constraint with the right-handed neutrino masses up to TeV scale. The heavy neutrinos contribute to ΔL = 2 processes like neutrinoless double beta decay and same-sign-dilepton (SSD) production in the colliders. The vacuum stability criterion also restricts the light-heavy neutrino mixing and constrains the branching ratio (BR) of lepton flavor-violating process, like μ→eγ mediated by the heavy neutrinos. We show that neutrinoless double beta decay with a lifetime ~1025 years can be observed if the lightest heavy neutrino mass is <4.5 TeV. We show that the vacuum stability condition and the experimental bound on μ→e γ together put a constrain on heavy neutrino mass MR>3.3 TeV. Finally we show that the observation of SSDs associated with jets at the LHC needs much larger luminosity than available at present. We have estimated the possible maximum cross-section for this process at the LHC and show that with an integrated luminosity 100 fb-1 it may be possible to observe the SSD signals as long as MR < 400 GeV.


Universe ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 29
Author(s):  
Harald Fritzsch

We discuss the mass matrices with texture zeros for the quarks and leptons. The flavor mixing angles for the quarks are functions of the quark masses and can be calculated. The results agree with the experimental data. The texture zero mass matrices for the leptons and the see-saw mechanism are used to derive relations between the matrix elements of the lepton mixing matrix and the ratios of the neutrino masses. Using the measured neutrino mass differences, the neutrino masses can be calculated. The neutrinoless double beta decay is discussed. The effective Majorana neutrino mass, describing the neutrinoless double beta decay, can be calculated—it is about 4.6 meV. The present experimental limit is at least twenty times larger.


2006 ◽  
Vol 21 (25) ◽  
pp. 1917-1921 ◽  
Author(s):  
ERNEST MA

The discrete subgroup Δ(27) of SU(3) has some interesting properties which may be useful for understanding charged-lepton and neutrino mass matrices. Assigning leptons to the 3 and [Formula: see text] representations of Δ(27), a simple form of the Majorana neutrino mass matrix is obtained and compared to present data.


2019 ◽  
Vol 34 (39) ◽  
pp. 1950329 ◽  
Author(s):  
Newton Nath

The minimal seesaw framework, embroiling the Dirac neutrino mass matrix [Formula: see text] and the Majorana neutrino mass matrix [Formula: see text], is quite successful to explain the current global-fit results of neutrino oscillation data. In this context, we consider the most predictive forms of [Formula: see text] and [Formula: see text] with two simple parameters, respectively. Considering these matrices, we obtain the low-energy neutrino mass matrix under type-I seesaw formalism which obeys [Formula: see text] reflection symmetry and predicts [Formula: see text] and [Formula: see text]. In the given set-up, we also evaluate the Baryon Asymmetry of the Universe (BAU) through successful leptogenesis and find that perturbation of [Formula: see text] leads to the observed BAU and breaks exactness of the symmetry. Moreover, we also perform various correlation studies among different parameters in the framework of broken symmetry.


Sign in / Sign up

Export Citation Format

Share Document