ABSORPTION CROSS-SECTION AND EMISSION SPECTRA OF SCHWARZSCHILD BLACK HOLE IN DIRAC FIELD

2008 ◽  
Vol 23 (33) ◽  
pp. 2867-2879 ◽  
Author(s):  
R. SINI ◽  
V. C. KURIAKOSE

The behavior of a Dirac field in a Schwarzschild black hole spacetime is studied. In this work the Hawking temperature and the absorption cross-section for Schwarzschild black hole placed in Dirac field are calculated, taking into consideration the matter waves reflected from the event horizon. The absorption cross-section σ abs in Dirac field is found to be ⅛ of absorption cross-section in scalar field. The emission spectra of Schwarzschild black hole placed in an environment of Dirac field is also obtained.

2009 ◽  
Vol 18 (01) ◽  
pp. 1-11 ◽  
Author(s):  
R. SINI ◽  
V. C. KURIAKOSE

The behavior of a charged scalar field in the RN black hole space–time is studied using the WKB approximation. In the present work, it is assumed that matter waves can be reflected from the event horizon. Using this effect, the Hawking temperature and the absorption cross section for an RN black hole placed in a charged scalar field are calculated. The absorption cross section σabs is found to be inversely proportional to the square of the Hawking temperature of the black hole.


Author(s):  
Ali Övgün

This letter aims to show the connection between the sinc approximation for high-energy absorption cross section and the shadow radius of the spherically symmetric black hole. This connection can give a physical interpretation of the absorption cross section in the eikonal limit parameters. Moreover, the use of this alternative way, one can extract its shadow radius from the absorption cross section in high energy limits to gain more information about the black hole spacetime. Our results indicate that the increasing the value of the shadow radius of the black hole, exponentially increase the the absorption cross section of the black hole in high-energy limits which can be captured by the Event Horizon Telescope (EHT) collaboration.


2005 ◽  
Vol 71 (12) ◽  
Author(s):  
Chris Doran ◽  
Anthony Lasenby ◽  
Sam Dolan ◽  
Ian Hinder

2014 ◽  
Vol 29 (02) ◽  
pp. 1450005 ◽  
Author(s):  
SANEESH SEBASTIAN ◽  
V. C. KURIAKOSE

In this work we have studied the scattering of scalar field around an extended black hole in F(R) gravity using WKB method. We have obtained the wave function in different regions such as near the horizon region, away from horizon and far away from horizon and the absorption cross-section are calculated. We find that the absorption cross-section is inversely proportional to the cube of Hawking temperature. We have also evaluated the Hawking temperature of the black hole via tunneling method.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Huriye Gürsel ◽  
İzzet Sakallı

We studied in detail the propagation of a massive tachyonic scalar field in the background of a five-dimensional (5D) Einstein–Yang–Mills–Born–Infeld–dilaton black string: the massive Klein–Gordon equation was solved, exactly. Next we obtained complete analytical expressions for the greybody factor, absorption cross section, and decay rate for the tachyonic scalar field in the geometry under consideration. The behaviors of the obtained results are graphically represented for different values of the theory’s free parameters. We also discuss why tachyons should be used instead of ordinary particles for the analytical derivation of the greybody factor of the dilatonic 5D black string.


2018 ◽  
Vol 27 (11) ◽  
pp. 1843012 ◽  
Author(s):  
Carolina L. Benone ◽  
Luiz C. S. Leite ◽  
Luís C. B. Crispino ◽  
Sam R. Dolan

We investigate null geodesics impinging parallel to the rotation axis of a Kerr–Newman black hole, and show that the absorption cross section for a massless scalar field in the eikonal limit can be described in terms of the photon orbit parameters. We compare our sinc and low-frequency approximations with numerical results, showing that they are in excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document