scholarly journals TWO NONCOMMUTATIVE PARAMETERS AND REGULAR COSMOLOGICAL PHASE TRANSITION IN THE SEMICLASSICAL DILATON COSMOLOGY

2008 ◽  
Vol 23 (15) ◽  
pp. 1079-1091 ◽  
Author(s):  
WONTAE KIM ◽  
EDWIN J. SON

We study cosmological phase transitions from modified equations of motion by introducing two noncommutative parameters in the Poisson brackets, which describes the initial- and future-singularity-free phase transition in the soluble semiclassical dilaton gravity with a nonvanishing cosmological constant. Accelerated expansion and decelerated expansion appear alternatively, where the model contains the second accelerated expansion. The final stage of the universe approaches the flat spacetime independent of the initial state of the curvature scalar as long as the product of the two noncommutative parameters is less than one. Finally, we show that the initial-singularity-free condition is related to the second accelerated expansion of the universe.

Author(s):  
S.R. Myrzakul ◽  
◽  
Y.M. Myrzakulov ◽  
М. Arzimbetova ◽  
◽  
...  

. Modified theories of gravity have become a kind of paradigm in modern physics because they seem to solve several shortcomings of the standard General Theory of Relativity (GTR) related to cosmology, astrophysics and quantum field theory. The most famous modified theories of gravity are F(R) and F(T) theories of gravity. A generalization of these two modified theories and gravitations, which was first proposed by Myrzakulov Ratbay. In this paper, we study an inhomogeneous isotropic cosmological model with a fermion field f-essence whose action has the form , where R is the scalar of curvature, and T is the torsion scalar, and Lm is the Lagrangian f-essence. A particular case is studied in detail when parameters are obtained that describe the current accelerated expansion of the Universe. The type of Lagrangian f-essence of this model is determined. The presented results show that gravity with f-essence can describe inflation in the early evolution of the Universe. A modified F(R, T) gravity with f-essence is considered. Equations of motion were obtained and the inflationary period of the early Universe was considered. To describe the inflationary period, the form of the Hubble parameter and the slow-roll parameter were determined.


2011 ◽  
Vol 20 (supp01) ◽  
pp. 65-72
Author(s):  
JORGE ALFARO

We study a model of the gravitational field based on two symmetric tensors. The equations of motion of test particles are derived. We explain how the Equivalence principle is recovered. Outside matter, the predictions of the model coincide exactly with General Relativity, so all classical tests are satisfied. In Cosmology, we get accelerated expansion without a cosmological constant.


2005 ◽  
Vol 20 (11) ◽  
pp. 2459-2464 ◽  
Author(s):  
B. P. KOSYAKOV

It is widely believed that the large redshifts for distant supernovae are due to the vacuum energy dominance, which is responsible for the anti-gravitation effect. A tacit assumption is that particles move along geodesics for the background metric. This is in the same spirit as the consensus regarding the uniform Galilean motion of a free electron. However, apart from the Galilean solution, there is a self-accelerated solution to the Lorentz–Dirac equation governing the behavior of a radiating electron. Likewise, a runaway solution to the entire system of equations, both gravitation and matter equations of motion including, may exist, which provides an alternative explanation for the accelerated expansion of the Universe.


Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 163
Author(s):  
Verónica Motta ◽  
Miguel A. García-Aspeitia ◽  
Alberto Hernández-Almada ◽  
Juan Magaña ◽  
Tomás Verdugo

The accelerated expansion of the Universe is one of the main discoveries of the past decades, indicating the presence of an unknown component: the dark energy. Evidence of its presence is being gathered by a succession of observational experiments with increasing precision in its measurements. However, the most accepted model for explaining the dynamic of our Universe, the so-called Lambda cold dark matter, faces several problems related to the nature of such energy component. This has led to a growing exploration of alternative models attempting to solve those drawbacks. In this review, we briefly summarize the characteristics of a (non-exhaustive) list of dark energy models as well as some of the most used cosmological samples. Next, we discuss how to constrain each model’s parameters using observational data. Finally, we summarize the status of dark energy modeling.


2002 ◽  
Vol 17 (05) ◽  
pp. 295-302
Author(s):  
SUBENOY CHAKRABORTY

In this paper it is shown that the present accelerated expansion of the Universe can be explained only by considering variation of the speed of light, without taking into account the cosmological constant or quintessence matter.


2021 ◽  
pp. 2150114
Author(s):  
Manuel Urueña Palomo ◽  
Fernando Pérez Lara

The vacuum catastrophe results from the disagreement between the theoretical value of the energy density of the vacuum in quantum field theory and the estimated one observed in cosmology. In a similar attempt in which the ultraviolet catastrophe was solved, we search for the value of the cosmological constant by brute-force through computation. We explore combinations of the fundamental constants in physics performing a dimensional analysis, in search of an equation resulting in the measured energy density of the vacuum or cosmological constant that is assumed to cause the accelerated expansion of the universe.


2018 ◽  
Vol 33 (40) ◽  
pp. 1850240
Author(s):  
Babur M. Mirza

We present here a general relativistic mechanism for accelerated cosmic expansion and the Hubble’s parameter. It is shown that spacetime vorticity coupled to the magnetic field density in galaxies causes the galaxies to recede from one another at a rate equal to the Hubble’s constant. We therefore predict an oscillatory universe, with zero curvature, without assuming violation of Newtonian gravity at large distances or invoking dark energy/dark matter hypotheses. The value of the Hubble’s constant, along with the scale of expansion, as well as the high isotropy of CMB radiation are deduced from the model.


2014 ◽  
Vol 74 (11) ◽  
Author(s):  
Ricardo Aguila ◽  
José Edgar Madriz Aguilar ◽  
Claudia Moreno ◽  
Mauricio Bellini

Sign in / Sign up

Export Citation Format

Share Document