scholarly journals THE CASIMIR FORCE OF QUANTUM SPRING IN THE (D+1)-DIMENSIONAL SPACETIME

2011 ◽  
Vol 26 (09) ◽  
pp. 669-679 ◽  
Author(s):  
XIANG-HUA ZHAI ◽  
XIN-ZHOU LI ◽  
CHAO-JUN FENG

The Casimir effect for a massless scalar field on the helix boundary condition which is named as quantum spring is studied in our recent paper.27 Here, the Casimir effect of the quantum spring is investigated in (D+1)-dimensional spacetime for the massless and massive scalar fields by using the zeta function techniques. We obtain the exact results of the Casimir energy and Casimir force for any D, which indicate a Z2 symmetry of the two space dimensions. The Casimir energy and Casimir force have different expressions for odd and even dimensional space in the massless case but in both cases the force is attractive. In the case of odd-dimensional space, the Casimir energy density can be expressed by the Bernoulli numbers, while in the even case it can be expressed by the ζ-function. And we also show that the Casimir force has a maximum value which depends on the spacetime dimensions. In particular, for a massive scalar field, we found that the Casimir force varies as the mass of the field changes.

2009 ◽  
Vol 24 (05) ◽  
pp. 393-400 ◽  
Author(s):  
XIANG-HUA ZHAI ◽  
YAN-YAN ZHANG ◽  
XIN-ZHOU LI

The Casimir force on two-dimensional pistons for massive scalar fields with both Dirichlet and hybrid boundary conditions is computed. The physical result is obtained by making use of generalized ζ-function regularization technique. The influence of the mass and the position of the piston in the force is studied graphically. The Casimir force for massive scalar field is compared to that for massless scalar field.


2017 ◽  
Vol 32 (24) ◽  
pp. 1750128 ◽  
Author(s):  
M. A. Valuyan

In this paper, the first-order radiative correction to the Casimir energy for a massive scalar field in the [Formula: see text] theory on a spherical surface with [Formula: see text] topology was calculated. In common methods for calculating the radiative correction to the Casimir energy, the counter-terms related to free theory are used. However, in this study, by using a systematic perturbation expansion, the obtained counter-terms in renormalization program were automatically position-dependent. We maintained that this dependency was permitted, reflecting the effects of the boundary conditions imposed or background space in the problem. Additionally, along with the renormalization program, a supplementary regularization technique that we named Box Subtraction Scheme (BSS) was performed. This scheme presents a useful method for the regularization of divergences, providing a situation that the infinities would be removed spontaneously without any ambiguity. Analysis of the necessary limits of the obtained results for the Casimir energy of the massive and massless scalar field confirmed the appropriate and reasonable consistency of the answers.


2011 ◽  
Vol 26 (26) ◽  
pp. 1953-1964 ◽  
Author(s):  
XIANG-HUA ZHAI ◽  
XIN-ZHOU LI ◽  
CHAO-JUN FENG

We use the generalized Chowla–Selberg formula to consider the Casimir effect of a scalar field with a helix torus boundary condition in the flat (D + 1)-dimensional spacetime. We obtain the exact results of the Casimir energy density and pressure for any D for both massless and massive scalar fields. The numerical calculation indicates that once the topology of spacetime is fixed, the ratio of the sizes of the helix will be a decisive factor. There is a critical value r c of the ratio r of the lengths at which the pressure vanishes. The pressure changes from negative to positive as the ratio r passes through r c increasingly. In the massive case, we find the pressure tends to the result of massless field when the mass approaches zero. Furthermore, there is another critical ratio of the lengths [Formula: see text] and the pressure is independent of the mass at [Formula: see text] in the D = 3 case.


2012 ◽  
Vol 27 (18) ◽  
pp. 1250094 ◽  
Author(s):  
MUSTAFA ÖZCAN

The Casimir energy for a massless scalar field between the closely spaced two concentric D-dimensional (for D>3) spheres is calculated by using the mode summation with contour integration in the complex plane of eigenfrequencies and the generalized Abel–Plana formula for evenly spaced eigenfrequency at large argument. The sign of the Casimir energy between closely spaced two concentric D-dimensional spheres for a massless scalar field satisfying the Dirichlet boundary conditions is strictly negative. The Casimir energy between (D-1)-dimensional surfaces, close to each other is regarded as interesting both by itself and as the key to describing of stability of the attractive Casimir force.


2003 ◽  
Vol 33 (4) ◽  
pp. 860-866 ◽  
Author(s):  
A.C. Aguiar Pinto ◽  
T.M. Britto ◽  
R. Bunchaft ◽  
F. Pascoal ◽  
F.S.S. da Rosa

2004 ◽  
Vol 19 (02) ◽  
pp. 111-116 ◽  
Author(s):  
E. ELIZALDE ◽  
A. C. TORT

We re-evaluate the zero point Casimir energy for the case of a massive scalar field in R1×S3 space, allowing also for deviations from the standard conformal value ξ=1/6, by means of zero temperature zeta function techniques. We show that for the problem at hand this approach is equivalent to the high temperature regularization of the vacuum energy, as conjectured in a previous publication. The analytic continuation can be performed in two ways, which are seen to be equivalent.


2020 ◽  
Vol 102 (4) ◽  
Author(s):  
M. B. Cruz ◽  
E. R. Bezerra de Mello ◽  
H. F. Santana Mota

2013 ◽  
Vol 22 (05) ◽  
pp. 1350026 ◽  
Author(s):  
T. GHANEH ◽  
F. DARABI ◽  
H. MOTAVALLI

We revisit the issue of continuous signature transition from Euclidean to Lorentzian metrics in a cosmological model described by Friedmann–Robertson–Walker (FRW) metric minimally coupled with a self-interacting massive scalar field. Then, using a noncommutative (NC) phase space of dynamical variables deformed by generalized uncertainty principle (GUP), we show that the signature transition occurs even for a model described by the FRW metric minimally coupled with a free massless scalar field accompanied by a cosmological constant. This indicates that the continuous signature transition might have been easily occurred at early universe just by a free massless scalar field, a cosmological constant and a NC phase space deformed by GUP, without resorting to a massive scalar field having an ad hoc complicate potential. We also study the quantum cosmology of the model and obtain a solution of Wheeler–DeWitt (WD) equation which shows a good correspondence with the classical path.


Sign in / Sign up

Export Citation Format

Share Document