scholarly journals THE SEARCH FOR DARK MATTER (WIMPs): AT LOW MASS AND WITH NEW METHODS

2011 ◽  
Vol 26 (13) ◽  
pp. 925-935 ◽  
Author(s):  
DAVID B. CLINE

We briefly review the constraints on the search for low mass WIMPs (<15 GeV) and the various experimental methods. These experiments depend on the response of detectors to low energy signals (less than 15 keV equivalent energy). We then describe recent fits to the data and attempt to determine L eff , the energy response at low energy. We find that the use of a liquid Xenon two-phase detector that employs the S2 data near threshold is the most sensitive current study of the low mass region. We rely on some talks at Dark Matter 2010.

2007 ◽  
Vol 173 ◽  
pp. 160-163 ◽  
Author(s):  
T. Shutt ◽  
C.E. Dahl ◽  
J. Kwong ◽  
A. Bolozdynya ◽  
P. Brusov

2010 ◽  
Vol 25 (11n12) ◽  
pp. 944-950
Author(s):  
HENRY T. WONG

The theme of the TEXONO research program is on the studies of low energy neutrino and dark matter physics. The current goals are on the development of germanium detectors with sub-keV sensitivities to realize experiments on neutrino magnetic moments, neutrino-nucleus coherent scattering, as well as WIMP dark matter searches. A threshold of 100–200 eV was achieved with prototype detectors at the Kuo-Sheng Neutrino Laboratory. New limits were placed for low-mass WIMPs. The dark matter program will move to a new underground laboratory currently under construction in Sichuan, China.


1989 ◽  
Vol 67 (12) ◽  
pp. 1168-1179
Author(s):  
B. Loiseau

The need to model quantum chromodynamics (QCD) at low energy is emphasized. An outline of the1/NC expansion of QCD, for large NC, shows the deep link between the Skyrme effective Lagrangian and QCD. The Skyrme model, built from the nonlinear σ model plus a stabilizer term related to vector dominance, is briefly described. The model satisfies like QCD chiral symmetry. We illustrate how the gauged Wess–Zumino action demonstrates that the topological current can be identified with the baryon current. We recall how one can show that the topological soliton is a fermion for odd NC. An example of an effective Lagrangian, built from π and low-mass vector mesons, ω, ρ, and A1 fields, is given. It describes rather well low-energy meson and baryon physics. Predictions of effective Lagrangians of the Skyrme type on meson–meson, meson–baryon, and baryon–baryon scatterings at low energy are depicted. A two-phase chiral symmetric model, the chiral bag, is introduced. It contains an inner core of confined quarks and gluons surrounded by meson fields in the topological configuration of a Skyrmion. It can describe nuclei from the low- to the high-energy range.


2019 ◽  
Vol 199 (1-2) ◽  
pp. 510-518 ◽  
Author(s):  
E. Bertoldo ◽  
◽  
A. H. Abdelhameed ◽  
G. Angloher ◽  
P. Bauer ◽  
...  

AbstractIn the current direct dark matter search landscape, the leading experiments in the sub-GeV mass region mostly rely on cryogenic techniques which employ crystalline targets. One attractive type of crystals for these experiments is those containing lithium, due to the fact that $$^7\hbox {Li}$$7Li is an ideal candidate to study spin-dependent dark matter interactions in the low mass region. Furthermore, $$^6\hbox {Li}$$6Li can absorb neutrons, a challenging background for dark matter experiments, through a distinctive signature which allows the monitoring of the neutron flux directly on site. In this work, we show the results obtained with three different detectors based on $$\hbox {LiAlO}_2$$LiAlO2, a target crystal never used before in cryogenic experiments.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Marco Aurelio Díaz ◽  
Benjamin Koch ◽  
Sebastián Urrutia-Quiroga

We study the Inert Higgs Doublet Model and its inert scalar HiggsHas the only source for dark matter. It is found that three mass regions of the inert scalar Higgs can give the correct dark matter relic density. The low mass region (between 3 and 50 GeV) is ruled out. New direct dark matter detection experiments will probe the intermediate (between 60 and 100 GeV) and high (heavier than 550 GeV) mass regions. Collider experiments are advised to search forD±→HW±decay in the two jets plus missing energy channel.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Zikang Chen ◽  
Tong Li ◽  
Jiajun Liao

Abstract The couplings between the neutrinos and exotic fermion can be probed in both neutrino scattering experiments and dark matter direct detection experiments. We present a detailed analysis of the general neutrino interactions with an exotic fermion and electrons at neutrino-electron scattering experiments. We obtain the constraints on the coupling coefficients of the scalar, pseudoscalar, vector, axialvector, tensor and electromagnetic dipole interactions from the CHARM-II, TEXONO and Borexino experiments. For the flavor-universal interactions, we find that the Borexino experiment sets the strongest bounds in the low mass region for the electromagnetic dipole interactions, and the CHARM-II experiment dominates the bounds for other scenarios. If the interactions are flavor dependent, the bounds from the CHARM-II or TEXONO experiment can be avoided, and there are correlations between the flavored coupling coefficients for the Borexino experiment. We also discuss the detection of sub-MeV DM absorbed by bound electron targets and illustrate that the vector coefficients preferred by XENON1T data are allowed by the neutrino-electron scattering experiments.


Sign in / Sign up

Export Citation Format

Share Document