scholarly journals An introduction to NRQED

2015 ◽  
Vol 30 (26) ◽  
pp. 1550128 ◽  
Author(s):  
Gil Paz

We present a pedagogical introduction to NRQED (non-relativistic quantum electrodynamics). NRQED is an effective field theory that describes the interaction of non-relativistic, possibly composite, spin- [Formula: see text] particle with the electromagnetic field. We explain in detail how the NRQED Lagrangian is constructed up to and including order [Formula: see text], where M is the mass of the spin- [Formula: see text] particle. As a sample application, we derive the Thomson scattering cross-section for the low energy scattering of a photon and a possibly composite spin- [Formula: see text] particle.

2017 ◽  
Vol 26 (12) ◽  
pp. 1750080 ◽  
Author(s):  
M. Moeini Arani ◽  
A. Koohi ◽  
S. Yarmahmoodi

We study the low-energy [Formula: see text] fusion reaction using a model inspired by the halo/cluster effective field theory (H/CEFT) formalism. For this purpose, we initially focus on the [Formula: see text] reaction without considering the Coulomb force in the incoming deuteron–triton system. In the next step, we insert the Coulomb correction in the [Formula: see text] cross-section. The cross-section results involve unknown parameters. So, finally, we fit the H/CEFT cross-section of the [Formula: see text] reaction to the experimental data and obtain the values of these unknown parameters.


2021 ◽  
Vol 62 (4) ◽  
Author(s):  
I. Skwira-Chalot ◽  
N. Kalantar-Nayestanaki ◽  
St. Kistryn ◽  
A. Kozela ◽  
E. Stephan

AbstractDifferential cross section for the $$^1H(d,pp)n$$ 1 H ( d , p p ) n reaction is sensitive to various dynamical ingredients and allows for thorough tests of theoretical potentials describing the interaction in the three nucleon systems. The analysis of the experimental data collected for the breakup reaction at the beam energy of 100 MeV has been performed and the first cross section results for selected configurations are presented in this paper. They are in good agreement with calculations based on the realistic potentials. Studies at this relatively low energy will also be important for examining awaited calculations within the Chiral Effective Field Theory.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tong Li ◽  
Xiao-Dong Ma ◽  
Michael A. Schmidt

Abstract In this work we investigate the implication of low-energy precision measurements on the quark-lepton charged currents in general neutrino interactions with sterile neutrinos in effective field theories. The physics in low-energy measurements is described by the low-energy effective field theory extended with sterile neutrinos (LNEFT) defined below the electroweak scale. We also take into account renormalization group running and match the LNEFT onto the Standard Model (SM) effective field theory with sterile neutrinos (SMNEFT) to constrain new physics (NP) above the electroweak scale. The most sensitive low-energy probes are from leptonic decays of pseudoscalar mesons and hadronic tau lepton decays in terms of precise decay branching fractions, the lepton flavor universality and the Cabibbo-Kobayashi-Maskawa (CKM) unitarity. We also consider other constraints including nuclear beta decay. The constraints on charged current operators are generally stronger than the ones for quark-neutrino neutral current operators. We find that the most stringent bounds on the NP scale of lepton-number-conserving and lepton- number-violating operators in SMNEFT are 74 (110) TeV and 9.8 (13) TeV, respectively, for the operators with down (strange) quark.


2014 ◽  
pp. 200-236
Author(s):  
John F. Donoghue ◽  
Eugene Golowich ◽  
Barry R. Holstein

2018 ◽  
Vol 175 ◽  
pp. 08011 ◽  
Author(s):  
Ed Bennett ◽  
Deog Ki Hong ◽  
Jong-Wan Lee ◽  
C.-J. David Lin ◽  
Biagio Lucini ◽  
...  

As a first step towards a quantitative understanding of the SU(4)/Sp(4) composite Higgs model through lattice calculations, we discuss the low energy effective field theory resulting from the SU(4) → Sp(4) global symmetry breaking pattern. We then consider an Sp(4) gauge theory with two Dirac fermion flavours in the fundamental representation on a lattice, which provides a concrete example of the microscopic realisation of the SU(4)/Sp(4) composite Higgs model. For this system, we outline a programme of numerical simulations aiming at the determination of the low-energy constants of the effective field theory and we test the method on the quenched theory. We also report early results from dynamical simulations, focussing on the phase structure of the lattice theory and a calculation of the lowest-lying meson spectrum at coarse lattice spacing.


2016 ◽  
Vol 25 (05) ◽  
pp. 1641007 ◽  
Author(s):  
Manuel Pavón Valderrama

Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.


Sign in / Sign up

Export Citation Format

Share Document