scholarly journals Global embeddings and hydrodynamic properties of Kerr black hole

2016 ◽  
Vol 31 (35) ◽  
pp. 1650204
Author(s):  
Soon-Tae Hong

In the presence of a rotating Kerr black hole, we investigate hydrodynamics of the massive particles and massless photons to construct relations among number density, pressure and internal energy density of the massive particles and photons around the rotating Kerr black hole and to study an accretion onto the black hole. On equatorial plane of the Kerr black hole, we investigate the bound orbits of the massive particles and photons around the black hole to produce their radial, azimuthal and precession frequencies. With these frequencies, we study the black holes GRO J1655-40 and 4U 1543-47 to explicitly obtain the radial, azimuthal and precession frequencies of the massive particles in the flow of perfect fluid. We next consider the massive particles in the stable circular orbit of radius of 1.0 ly around the supernovas SN 1979C, SN 1987A and SN 2213-1745 in the Kerr curved spacetime, and around the potential supermassive Schwarzschild black holes M87, NGC 3115, NGC 4594, NGC 3377, NGC 4258, M31, M32 and Galatic center, to estimate their radial and azimuthal frequencies, which are shown to be the same results as those in no precession motion. The photon unstable orbit is also discussed in terms of the impact parameter of the photon trajectory. Finally, on the equatorial plane of the Kerr black hole, we construct the global flat embedding structures possessing (9 + 3) dimensionalities outside and inside the event horizon of the rotating Kerr black hole. Moreover, on the plane, we investigate the warp products of the Kerr spacetime.

Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.


2019 ◽  
Vol 34 (16) ◽  
pp. 1950125
Author(s):  
V. B. Bezerra ◽  
J. M. Toledo

We calculate thermal corrections to the Casimir energy of a massless scalar field in the Kerr black hole surrounded by quintessence, taking into account the metrics derived by Ghosh [S. G. Ghosh, Eur. Phys. J. C 76, 222 (2016)] and Toshmatov et al. [B. Toshmatov, Z. Stuchlík and B. Ahmedov, Eur. Phys. J. Plus 132, 98 (2017)]. We compare both results and show that they are almost the same, except very close to the horizons. At [Formula: see text], equatorial plane, the results are the same, as should be expected, due to the fact that the metrics coincide in this region.


2017 ◽  
Vol 27 (01) ◽  
pp. 1750179 ◽  
Author(s):  
Wen-Biao Han ◽  
Shu-Cheng Yang

We report exotic orbital phenomena of spinning test particles orbiting around a Kerr black hole, i.e. some orbits of spinning particles are asymmetrical about the equatorial plane. When a nonspinning test particle orbits around a Kerr black hole in a strong field region, due to relativistic orbital precessions, the pattern of trajectories is symmetrical about the equatorial plane of the Kerr black hole. However, the patterns of the spinning particles’ orbit are no longer symmetrical about the equatorial plane for some orbital configurations and large spins. We argue that these asymmetrical patterns come from the spin–spin interactions between spinning particles and Kerr black holes, because the directions of spin–spin forces can be arbitrary, and distribute asymmetrically about the equatorial plane.


Author(s):  
Ahmad Sheykhi ◽  
Saskia Grunau

In this paper, we construct some new classes of topological black hole solutions in the context of mimetic gravity and investigate their properties. We study the uncharged and charged black holes, separately. We find the following novel results: (i) In the absence of a potential for the mimetic field, black hole solutions can address the flat rotation curves of spiral galaxies and alleviate the dark matter problem without invoking particle dark matter. Thus, mimetic gravity can provide a theoretical background for understanding flat galactic rotation curves through modifying Schwarzschild space–time. (ii) We also investigate the casual structure and physical properties of the solutions. We observe that in the absence of a potential, our solutions are not asymptotically flat, while in the presence of a negative constant potential for the mimetic field, the solutions are asymptotically anti-de Sitter (AdS). (iii) Finally, we explore the motion of massless and massive particles and give a list of the types of orbits. We study the differences of geodesic motion in the Einstein gravity and in mimetic gravity. In contrast to the Einstein gravity, massive particles always move on bound orbits and cannot escape the black hole in mimetic gravity. Furthermore, we find stable bound orbits for massless particles.


Author(s):  
Charles D. Bailyn

This chapter examines the spin of a black hole. The spin is usually described as a nondimensional parameter, which can range from zero (a nonspinning black hole) to one (a situation described as “maximally spinning”). The differences in space-time between a nonspinning Schwarzschild black hole and a Kerr black hole of the same mass have potentially observable effects. The most obvious of these differences is the position of the innermost stable circular orbit (ISCO), which has a significant effect on the inner edge of an accretion disk. It is through determination of the physical size of the ISCO that the spins of black holes are determined.


2011 ◽  
Vol 26 (26) ◽  
pp. 1933-1942 ◽  
Author(s):  
HIROMI SUZUKI

Previously we investigated classical motion of a string in (3+1)-dimensional spherically symmetric neutral and charged black holes. As an extension the solutions in (3+1)-dimensional axially symmetric rotating black hole are investigated. The solutions for the wiggly string exhibit open strings lying in the radial direction in the equatorial plane outside the horizon.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


2000 ◽  
Vol 195 ◽  
pp. 417-418
Author(s):  
S. Nitta

The aim of this work is to demonstrate the properties of the magnetospheric model around Kerr black holes, so-called the “flywheel” (rotation powered) model. The fly-wheel engine of the BH accretion disk system is applied to the statistics of QSOs/AGNs. Nitta, Takahashi, & Tomimatsu clarified the individual evolution of the Kerr black-hole fly-wheel engine, which is parameterized by black-hole mass, initial Kerr parameter, magnetic field near the horizon, and a dimensionless small parameter. We impose a statistical model for the initial mass function of an ensemble of black holes using the Press-Schechter formalism. With the help of additional assumptions, we can discuss the evolution of the luminosity function and the spatial number density (population) of QSOs/AGNs. The result explains well the decrease of very bright QSOs and decrease of population after z ~ 2.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Monimala Mondal ◽  
Farook Rahaman ◽  
Ksh. Newton Singh

AbstractGeodesic motion has significant characteristics of space-time. We calculate the principle Lyapunov exponent (LE), which is the inverse of the instability timescale associated with this geodesics and Kolmogorov–Senai (KS) entropy for our rotating Kerr–Kiselev (KK) black hole. We have investigate the existence of stable/unstable equatorial circular orbits via LE and KS entropy for time-like and null circular geodesics. We have shown that both LE and KS entropy can be written in terms of the radial equation of innermost stable circular orbit (ISCO) for time-like circular orbit. Also, we computed the equation marginally bound circular orbit, which gives the radius (smallest real root) of marginally bound circular orbit (MBCO). We found that the null circular geodesics has larger angular frequency than time-like circular geodesics ($$Q_o > Q_{\sigma }$$ Q o > Q σ ). Thus, null-circular geodesics provides the fastest way to circulate KK black holes. Further, it is also to be noted that null circular geodesics has shortest orbital period $$(T_{photon}< T_{ISCO})$$ ( T photon < T ISCO ) among the all possible circular geodesics. Even null circular geodesics traverses fastest than any stable time-like circular geodesics other than the ISCO.


Sign in / Sign up

Export Citation Format

Share Document