Casimir forces on a bi-anisotropic absorbing magneto-dielectric slab between two parallel conducting plates

2018 ◽  
Vol 33 (14) ◽  
pp. 1850075 ◽  
Author(s):  
Majid Amooshahi ◽  
Ali Shoughi

A fully canonical quantization of electromagnetic field in the presence of a bi-anisotropic absorbing magneto-dielectric slab is demonstrated. The electric and the magnetic polarization densities of the magneto-dielectric slab are defined in terms of the dynamical variables modeling the slab and the coupling tensors that couple the electromagnetic field to the slab. The four susceptibility tensors of the bi-anisotropic magneto-dielectric slab are expressed in terms of the coupling tensors that couple an electromagnetic field to the slab. It is shown that the four susceptibility tensors of the bi-anisotropic magneto-dielectric slab satisfy Kramers–Kronig relations. The Maxwell’s equations are exactly solved in the presence of the bi-anisotropic magneto-dielectric slab. The tangential and the normal components of the Casimir forces exerted on the bi-anisotropic magnet-dielectric slab exactly are calculated in the vacuum state and thermal state of the total system. It is shown that the tangential components of the Casimir forces vanish when the bi-anisotropic slab is converted to an isotropic slab.

2019 ◽  
Vol 34 (26) ◽  
pp. 1950149
Author(s):  
Marzieh Hossein Zadeh ◽  
Majid Amooshahi

A fully canonical quantization of electromagnetic field in the presence of a bi-anisotropic absorbing magneto-dielectric cylindrical shell is provided. The mode expansions of the dynamical quantum fields, contained in the theory, is achieved and the ladder operators of the system are introduced. Using the Frobenius’s series technique, the Maxwell’s equations in the presence of the bi-anisotropic absorbing magneto-dielectric cylindrical shell are solved and the space–time dependence of the quantized electromagnetic field is obtained. Applying the conservation principle of the angular momentum, the net quantum vacuum torque exerted on the bi-anisotropic absorbing magneto-dielectric cylindrical shell is calculated. The net quantum vacuum torque exerted on the cylindrical shell is calculated in the vacuum state and the thermal state of the system. The quantum vacuum torque on the cylindrical shell identically vanishes when the bi-anisotropic absorbing magneto-dielectric cylindrical shell is converted to an isotropic one.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Alexander Burinskii

The Dirac electron is considered as a particle-like solution consistent with its own Kerr–Newman (KN) gravitational field. In our previous works we considered the regularized by López KN solution as a bag-like soliton model formed from the Higgs field in a supersymmetric vacuum state. This bag takes the shape of a thin superconducting disk coupled with circular string placed along its perimeter. Using the unique features of the Kerr–Schild coordinate system, which linearizes Dirac equation in KN space, we obtain the solution of the Dirac equations consistent with the KN gravitational and electromagnetic field, and show that the corresponding solution takes the form of a massless relativistic string. Obvious parallelism with Heisenberg and Schrödinger pictures of quantum theory explains remarkable features of the electron in its interaction with gravity and in the relativistic scattering processes.


1992 ◽  
Vol 06 (03n04) ◽  
pp. 409-415 ◽  
Author(s):  
AMITABH JOSHI ◽  
S. V. LAWANDE

Properties of electromagnetic field in the squeezed negative binomial state are investigated in terms of photon number distribution and Wigner function. The relationship of the density matrix of the squeezed negative binomial state to the density matrix of the squeezed thermal state is shown explicitly. The possibility of generation of the negative binomial state is also discussed.


The procedure devised by Dirac for the canonical quantization of systems described by degenerate lagrangians is used to construct the hamiltonian for molecules interacting with the electromagnetic field. The hamiltonian obtained is expressed in terms of the gauge invariant field strengths and the electric and magnetic multipole moments of the molecules. The Coulomb gauge is introduced but other gauge conditions could be used. Finally, a physical interpretation of the unitary transformation that may be used to generate the multipole hamiltonian is given.


2013 ◽  
Vol 79 (6) ◽  
pp. 1133-1135 ◽  
Author(s):  
BO LEHNERT

AbstractA reconsideration is made on the basic concepts of the individual photon, including its angular momentum (spin) and a possibly existing very small rest mass. In terms of conventional classical theory, as well as of its quantum mechanical counterpart, the results from a so far established Standard Model of an empty vacuum state are not found to be reconcilable with an experimentally relevant photon model. The main properties of such a model would on the other hand become compatible with the results of a recently established revised quantum electrodynamic theory based on a non-zero electric field divergence in the vacuum and a corresponding symmetry breaking of the electromagnetic field.


Sign in / Sign up

Export Citation Format

Share Document