individual photon
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1368
Author(s):  
David L. Andrews

Optical vortices are beams of laser light with screw symmetry in their wavefront. With a corresponding azimuthal dependence in optical phase, they convey orbital angular momentum, and their methods of production and applications have become one of the most rapidly accelerating areas in optical physics and technology. It has been established that the quantum nature of electromagnetic radiation extends to properties conveyed by each individual photon in such beams. It is therefore of interest to identify and characterize the symmetry aspects of the quantized fields of vortex radiation that relate to the beam and become manifest in its interactions with matter. Chirality is a prominent example of one such aspect; many other facets also invite attention. Fundamental CPT symmetry is satisfied throughout the field of optics, and it plays significantly into manifestations of chirality where spatial parity is broken; duality symmetry between electric and magnetic fields is also involved in the detailed representation. From more specific considerations of spatial inversion, amongst which it emerges that the topological charge has the character of a pseudoscalar, other elements of spatial symmetry, beyond simple parity inversion, prove to repay additional scrutiny. A photon-based perspective on these features enables regard to be given to the salient quantum operators, paying heed to quantum uncertainty limits of observables. The analysis supports a persistence in features of significance for the material interactions of vortex beams, which may indicate further scope for suitably tailored experimental design.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nina Stiesdal ◽  
Hannes Busche ◽  
Kevin Kleinbeck ◽  
Jan Kumlin ◽  
Mikkel G. Hansen ◽  
...  

AbstractThe preparation of light pulses with well-defined quantum properties requires precise control at the individual photon level. Here, we demonstrate exact and controlled multi-photon subtraction from incoming light pulses. We employ a cascaded system of tightly confined cold atom ensembles with strong, collectively enhanced coupling of photons to Rydberg states. The excitation blockade resulting from interactions between Rydberg atoms limits photon absorption to one per ensemble and rapid dephasing of the collective excitation suppresses stimulated re-emission of the photon. We experimentally demonstrate subtraction with up to three absorbers. Furthermore, we present a thorough theoretical analysis of our scheme where we identify weak Raman decay of the long-lived Rydberg state as the main source of infidelity in the subtracted photon number and investigate the performance of the multi-photon subtractor for increasing absorber numbers in the presence of Raman decay.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
T. G. Blackburn

AbstractCharged particles accelerated by electromagnetic fields emit radiation, which must, by the conservation of momentum, exert a recoil on the emitting particle. The force of this recoil, known as radiation reaction, strongly affects the dynamics of ultrarelativistic electrons in intense electromagnetic fields. Such environments are found astrophysically, e.g. in neutron star magnetospheres, and will be created in laser–matter experiments in the next generation of high-intensity laser facilities. In many of these scenarios, the energy of an individual photon of the radiation can be comparable to the energy of the emitting particle, which necessitates modelling not only of radiation reaction, but quantum radiation reaction. The worldwide development of multi-petawatt laser systems in large-scale facilities, and the expectation that they will create focussed electromagnetic fields with unprecedented intensities $$> 10^{23}\,\mathrm {W}\text {cm}^{-2}$$ > 10 23 W cm - 2 , has motivated renewed interest in these effects. In this paper I review theoretical and experimental progress towards understanding radiation reaction, and quantum effects on the same, in high-intensity laser fields that are probed with ultrarelativistic electron beams. In particular, we will discuss how analytical and numerical methods give insight into new kinds of radiation–reaction-induced dynamics, as well as how the same physics can be explored in experiments at currently existing laser facilities.


2020 ◽  
Author(s):  
Thomas Neumann ◽  
Kelly Brunt ◽  
Lori Marguder ◽  
Nathan Kurtz

<p>After launching on 15 September 2018, the Ice, Cloud, and Land Elevation Satellite – 2 (ICESat-2) Mission began collecting data on 14 October 2018.  The mission uses green laser light emitted by the Advanced Topographic Laser Altimetry System (ATLAS) to detect individual photons that are reflected by the Earth’s surface and returned to ATLAS.  These photons, when combined with information on the pointing direction, and position of the observatory in space, provide a geolocation and elevation for every measurement that spans the globe from 88 degrees north latitude to 88 degrees south.  The Global Geolocated Photon data product provides a latitude, longitude, elevation, and measurement time for each photon event telemetered to Earth for each of the instrument’s six beams. This product also delineates between high, medium, and low signal confidence levels and those measurements associated with background noise. The higher level, along-track products each use different strategies for photon aggregation to optimize the precision and accuracy of the surface retrievals over specific surface types. These types include land ice, sea ice, vegetation/land, ocean, and inland water. There is a separate channel dedicated to atmospheric returns to measure cloud and aerosols over a vertical window of 15 km. Calibration efforts utilized well designed on-orbit maneuvers to identify both pointing and range biases attributed to orbital variations on the satellite. Once corrected, the science-quality data products were released to the public in May 2019.</p><p> </p><p>In this presentation, we will present our ongoing work to evaluate and validate the geolocation and elevation accuracy and precision of measurements provided by the ICESat-2 mission.  The approaches are diverse in both location and methodology to ensure that we have a comprehensive assessment of the ATLAS performance variations throughout the orbital cycles. These strategies include comparisons with ground-based and airborne elevation measurements over the ice sheets, detailed analysis of returns from well-surveyed corner cube retro-reflectors, comparison of sea ice freeboard measured by airborne lidars, evaluation of global-scale ocean elevation through comparison with radar altimeters, and comparison of vegetation canopy height metrics measured by airborne lidar.  Our work to date demonstrates that individual photon elevations are accurate to approximately 30 cm vertically, and 6 m radially.  Aggregating many photons together reduces the elevation uncertainty to less than 5 cm for relatively flat and smooth ice sheet interiors.</p>


2019 ◽  
Vol 99 (2) ◽  
Author(s):  
Leon Droenner ◽  
Nicolas L. Naumann ◽  
Eckehard Schöll ◽  
Andreas Knorr ◽  
Alexander Carmele

2018 ◽  
Vol 25 (6) ◽  
pp. 1650-1657 ◽  
Author(s):  
Mohamad Khalil ◽  
Erik Schou Dreier ◽  
Jan Kehres ◽  
Jan Jakubek ◽  
Ulrik Lund Olsen

Timepix3 (256 × 256 pixels with a pitch of 55 µm) is a hybrid-pixel-detector readout chip that implements a data-driven architecture and is capable of simultaneous time-of-arrival (ToA) and energy (ToT: time-over-threshold) measurements. The ToA information allows the unambiguous identification of pixel clusters belonging to the same X-ray interaction, which allows for full one-by-one detection of photons. The weighted mean of the pixel clusters can be used to measure the subpixel position of an X-ray interaction. An experiment was performed at the European Synchrotron Radiation Facility in Grenoble, France, using a 5 µm × 5 µm pencil beam to scan a CdTe-ADVAPIX-Timepix3 pixel (55 µm × 55 µm) at 8 × 8 matrix positions with a step size of 5 µm. The head-on scan was carried out at four monochromatic energies: 24, 35, 70 and 120 keV. The subpixel position of every single photon in the beam was constructed using the weighted average of the charge spread of single interactions. Then the subpixel position of the total beam was found by calculating the mean position of all photons. This was carried out for all points in the 8 × 8 matrix of beam positions within a single pixel. The optimum conditions for the subpixel measurements are presented with regards to the cluster sizes and beam subpixel position, and the improvement of this technique is evaluated (using the charge sharing of each individual photon to achieve subpixel resolution) versus alternative techniques which compare the intensity ratio between pixels. The best result is achieved at 120 keV, where a beam step of 4.4 µm ± 0.86 µm was measured.


The ultimate goal of all development of photosensitive detectors is to find a detector capable of detecting single photons with high efficiency. Furthermore, the photon shall not only be detected as a photon somewhere. We want to know where it was with high precision in space, often down to a few micrometers. We want to know when it was there, preferably with a precision of less than a nanosecond. We want to know where and when for each individual photon in a high flux of photons. Sometimes we even want to know the polarization of each photon. Position-sensitive gaseous photomultipliers filled with photosensitive vapours are capable of all of this. It is a challenging task. A single photon is the weakest light there is. For UV and visible light the energy in the photon is so low that it can barely emit a single electron through photoelectric effect with a gas. This photoelectron has practically no kinetic energy when it is released. A single electron at rest is the weakest possible electrical signal there is, so the detector must be able to amplify this extremely weak signal without any noise. We will here describe the history of photosensitive gaseous detectors, their applications and what the state of the art technology is today.


2016 ◽  
Vol 23 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Markus Braune ◽  
Günter Brenner ◽  
Siarhei Dziarzhytski ◽  
Pavle Juranić ◽  
Andrey Sorokin ◽  
...  

The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon–matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer.


2014 ◽  
Vol 113 (11) ◽  
Author(s):  
Kristin M. Beck ◽  
Wenlan Chen ◽  
Qian Lin ◽  
Michael Gullans ◽  
Mikhail D. Lukin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document