Charged perfect fluid gravitational collapse in f(R, T) gravity

2019 ◽  
Vol 34 (20) ◽  
pp. 1950153 ◽  
Author(s):  
G. Abbas ◽  
Riaz Ahmed

We explore the problem of charged perfect fluid spherically symmetric gravitational collapse in f(R, T) gravity (R is Ricci scalar and T is the trace of energy–momentum tensor). We have taken the interior boundary of a star as spherically symmetric metric filled with the charged perfect fluid. In order to study charged perfect fluid collapse, we have investigated the exact solutions of the Maxwell–Einstein field equations solutions using the most simplified form for f(R, T) model f(R, T) = R + 2[Formula: see text]T, where [Formula: see text] is model parameter. This study involves the effects of charge as well as coupling parameter on collapse of a star. We studied the nature of trapped surfaces, apparent horizon and singularity structure in detail. It has been found that singularity is formed earlier than the apparent horizons, so the end state of gravitational collapse in this case is black hole.

2002 ◽  
Vol 11 (02) ◽  
pp. 155-186 ◽  
Author(s):  
C. F. C. BRANDT ◽  
L.-M. LIN ◽  
J. F. VILLAS DA ROCHA ◽  
A. Z. WANG

Analytic spherically symmetric solutions of the Einstein field equations coupled with a perfect fluid and with self-similarities of the zeroth, first and second kinds, found recently by Benoit and Coley [Class. Quantum Grav.15, 2397 (1998)], are studied, and found that some of them represent gravitational collapse. When the solutions have self-similarity of the first (homothetic) kind, some of the solutions may represent critical collapse but in the sense that now the "critical" solution separates the collapse that forms black holes from the collapse that forms naked singularities. The formation of such black holes always starts with a mass gap, although the "critical" solution has homothetic self-similarity. The solutions with self-similarity of the zeroth and second kinds seem irrelevant to critical collapse. Yet, it is also found that the de Sitter solution is a particular case of the solutions with self-similarity of the zeroth kind, and that the Schwarzschild solution is a particular case of the solutions with self-similarity of the second kind with the index α=3/2.


1990 ◽  
Vol 68 (12) ◽  
pp. 1403-1409 ◽  
Author(s):  
T. Biech ◽  
A Das

In this paper we have sought solutions of the nonstatic spherically symmetric field equations that exhibit nonzero shear. The Lorentzian-warped product construction is used to present the spherically symmetric metric tensor in double-null coordinates. The field equations, kinematical quantities, and Riemann invariants are computed for a perfect-fluid stress-energy tensor. For a special observer, one of the field equations reduces to a form that admits wavelike solutions. Assuming a functional relationship between the metric coefficients, the remaining field equation becomes a second-order nonlinear differential equation that may be reduced as well.


2014 ◽  
Vol 29 (34) ◽  
pp. 1450188 ◽  
Author(s):  
Uma Papnoi ◽  
Megan Govender ◽  
Sushant G. Ghosh

We study the intriguing analogy between gravitational dynamics of the horizon and thermodynamics for the case of nonstationary radiating spherically symmetric black holes both in four dimensions and higher dimensions. By defining all kinematical parameters of nonstationary radiating black holes in terms of null vectors, we demonstrate that it is possible to interpret the Einstein field equations near the apparent horizon in the form of a thermodynamical identity T dS = dE+P dV.


2019 ◽  
Vol 34 (03) ◽  
pp. 1950025 ◽  
Author(s):  
H. Nazar ◽  
G. Abbas

The purpose of this paper is to discuss the perfect fluid gravitational collapse in modified f(R) metric gravity theories with non-minimal curvature coupled to matter. For this inference, we investigate the effects on self-gravitating implosion with spherically symmetric non-static geometry in the presence of extra force [Formula: see text], that express the cosmic expansion with dark source constraints. Matching conditions are given in which we have taken the insertion of non-static interior and static exterior regions along with cosmological constant. We have investigated the apparent horizons with effective results and along with their physical interpretation. It is analyzed that the extra component of dark source material reduces the gravitating implosion, hence slowing the rate of collapse. This study also reflects the contribution towards the perfect fluid for the generalization in f(R) gravity with zero coupling constant [Formula: see text].


2003 ◽  
Vol 12 (07) ◽  
pp. 1315-1332 ◽  
Author(s):  
C. F. C. BRANDT ◽  
M. F. A. DA SILVA ◽  
JAIME F. VILLAS DA ROCHA ◽  
R. CHAN

We study spacetimes of spherically symmetric anisotropic fluid with homothetic self-similarity. We find a class of solutions to the Einstein field equations by assuming that the tangential pressure of the fluid is proportional to its radial one and that the fluid moves along time-like geodesics. The energy conditions, and geometrical and physical properties of these solutions are studied and found that some of them represent gravitational collapse of an anisotropic fluid.


2020 ◽  
Vol 35 (13) ◽  
pp. 2050103 ◽  
Author(s):  
Riaz Ahmed ◽  
G. Abbas

In this paper, we have used the Karmarkar condition to the spherically symmetric non-static radiating star experiencing dissipative gravitational collapse with a heat flux in the framework of [Formula: see text] gravity, (where [Formula: see text] is Ricci scalar which replaces Lagrangian density and [Formula: see text] is the trace of energy–momentum tensor). To obtain the ultimate results of the gravitational field equations in [Formula: see text] scenario, we take a linear form of the function as [Formula: see text]. In this connection, the Karmarkar condition along with boundary condition generates a model of radiating star and enables us to completely indicate the spatial presence of gravitational potentials. Vadiya’s exterior solution across a time-like hypersurface is smoothly matched to the interior solution which allows to study the physical conduct of our model under consideration. Furthermore, we have analyzed the energy conditions of radiating star in [Formula: see text] gravity and analyzed the physical behavior of thermodynamics parameters which provide a detailed discussion of the model. For coupling parameter [Formula: see text], we successfully obtain the standard results of General Relativity.


2019 ◽  
Vol 16 (12) ◽  
pp. 1950194
Author(s):  
M. Tahir ◽  
G. Abbas

This paper deals with spherically symmetric gravitational collapse of inhomogeneous perfect fluid in Einstein Gauss–Bonnet gravity. The physical quantities have been plotted in the EGB gravity. The Ricci Scalar and Kretschmann scalar have been determined to study the curvature singularity. The shell focusing curvature singularities are generated at last stage of gravitational collapse of object. The formation of singularity and apparent horizon depends on the initial data. Also, the energy conditions have been discussed for the reasonable energy momentum tensor. The presence of GB coupling constant [Formula: see text] modifies the structure of singularity and formation of apparent horizon.


2016 ◽  
Vol 2016 ◽  
pp. 1-15
Author(s):  
Aurel Bejancu ◽  
Hani Reda Farran

Based on general (1+3) threading of the spacetime (M,g), we obtain a new and simple splitting of both the Einstein field equations (EFE) and the conservation laws in (M,g). As an application, we obtain the splitting of EFE in an almost FLRW universe with energy-momentum tensor of a perfect fluid. In particular, we state the perturbation Friedmann equations in an almost FLRW universe.


2009 ◽  
Vol 24 (31) ◽  
pp. 2551-2563 ◽  
Author(s):  
M. SHARIF ◽  
G. ABBAS

In this paper, the effect of electromagnetic field has been investigated on the spherically symmetric gravitational collapse with the perfect fluid in the presence of positive cosmological constant. Junction conditions between the static exterior and non-static interior spherically symmetric spacetimes are discussed. We study the apparent horizons and their physical significance. It is found that electromagnetic field reduces the bound of cosmological constant by reducing the pressure and hence collapsing process is faster as compared to the perfect fluid case. This work gives the generalization of the perfect fluid case to the charged perfect fluid. Results for the perfect fluid case are recovered.


Sign in / Sign up

Export Citation Format

Share Document