scholarly journals Charged fermions tunneling from stationary axially symmetric black holes with generalized uncertainty principle

2019 ◽  
Vol 34 (23) ◽  
pp. 1950184 ◽  
Author(s):  
Muhammad Rizwan ◽  
Muhammad Zubair Ali ◽  
Ali Övgün

In this paper, we study the tunneling of charged fermions from the stationary axially symmetric black holes using the generalized uncertainty principle (GUP) via Wentzel, Kramers, and Brillouin (WKB) method. The emission rate of the charged fermions and corresponding modified Hawking temperature of Kerr–Newman black hole, Einstein–Maxwell-dilaton-axion (EMDA) black hole, Kaluza–Klein dilaton black hole, and then, charged rotating black string are obtained and we show that the corrected thermal spectrum is not purely thermal because of the minimal scale length which cause the black hole’s remnant.

2019 ◽  
Vol 28 (08) ◽  
pp. 1950102
Author(s):  
Muhammad Rizwan ◽  
Khalil Ur Rehman

By considering the quantum gravity effects based on generalized uncertainty principle, we give a correction to Hawking radiation of charged fermions from accelerating and rotating black holes. Using Hamilton–Jacobi approach, we calculate the corrected tunneling probability and the Hawking temperature. The quantum corrected Hawking temperature depends on the black hole parameters as well as quantum number of emitted particles. It is also seen that a remnant is formed during the black hole evaporation. In addition, the corrected temperature is independent of an angle [Formula: see text] which contradicts the claim made in the literature.


2013 ◽  
Vol 28 (10) ◽  
pp. 1350029 ◽  
Author(s):  
M. M. STETSKO

We investigate a microscopic black hole in the case of modified generalized uncertainty principle with a minimal uncertainty in position as well as in momentum. We calculate thermodynamical functions of a Schwarzschild black hole such as temperature, entropy and heat capacity. It is shown that the incorporation of minimal uncertainty in momentum leads to minimal temperature of a black hole. Minimal temperature gives rise to appearance of a phase transition. Emission rate equation and black hole's evaporation time are also obtained.


2019 ◽  
Vol 35 (07) ◽  
pp. 2050029
Author(s):  
Amritendu Haldar ◽  
Ritabrata Biswas

In this paper, we consider the five-dimensional Myers–Perry black hole solution to study the thermodynamic properties and compare this with the thermodynamic behaviors of generalized uncertainty principle (GUP)-induced Myers–Perry solution. We study the existence of remnant quantities. Stability criteria are studied by observing the natures of temperature growth and sign changes in specific heat. We try to locate phase transitions. Moreover, we study the corresponding physical range for the GUP parameter and try to justify the value with the data predicted by different observations.


2009 ◽  
Vol 24 (07) ◽  
pp. 1383-1415
Author(s):  
C. CASTRO ◽  
J. A. NIETO ◽  
L. RUIZ ◽  
J. SILVAS

Novel static, time-dependent and spatial–temporal solutions to Einstein field equations, displaying singularities, with and without horizons, and in several dimensions, are found based on a dimensional reduction procedure widely used in Kaluza–Klein-type theories. The Kerr–Newman black hole entropy as well as the Reissner–Nordstrom, Kerr and Schwarzschild black hole entropy are derived from the corresponding Euclideanized actions. A very special cosmological model based on the dynamical interior geometry of a black hole is found that has no singularities at t = 0 due to the smoothing of the mass distribution. We conclude with another cosmological model equipped also with a dynamical horizon and which is related to Vaidya's metric (associated with the Hawking radiation of black holes) by interchanging t ↔ r, which might render our universe a dynamical black hole.


2013 ◽  
Vol 28 (03) ◽  
pp. 1340011 ◽  
Author(s):  
B. J. CARR

We propose a new way in which black holes connect macrophysics and microphysics. The Generalized Uncertainty Principle suggests corrections to the Uncertainty Principle as the energy increases towards the Planck value. It also provides a natural transition between the expressions for the Compton wavelength below the Planck mass and the black hole event horizon size above it. This suggests corrections to the event horizon size as the black hole mass falls towards the Planck value, leading to the concept of a Generalized Event Horizon. Extrapolating this expression below the Planck mass suggests the existence of a new kind of black hole, whose size is of order its Compton wavelength. Recently it has been found that such a black hole solution is permitted by loop quantum gravity, its unusual properties deriving from the fact that it is hidden behind the throat of a wormhole. This has important implications for the formation and evaporation of black holes in the early Universe, especially if there are extra spatial dimensions.


2011 ◽  
Vol 26 (16) ◽  
pp. 1221-1230 ◽  
Author(s):  
HIROMI SUZUKI

Previously we investigated the cosmic wiggly strings in (3+1)-dimensional Schwarzschild, Reissner–Nordström and Kerr black holes. As an extension, the solutions in (3+1)-dimensional axially symmetric charged rotating black hole are investigated. The solution for the wiggly string exhibits open strings lying along the circular orbit in the equatorial plane outside horizon.


2021 ◽  
Author(s):  
Wen-Xiang Chen

In this article, the superradiation stability of Kerr-Newman black holes is discussed by introducing the condition used in Kerr black holes y into them. Moreover, the motion equation of the minimal coupled scalar perturbation in a Kerr-Newman black hole is divided into angular and radial parts. We adopt the findings made by Erhart et al. on uncertainty principle in 2012, and discuss the bounds on y.


2017 ◽  
Vol 1 (2) ◽  
pp. 127
Author(s):  
Mustari Mustari ◽  
Yuant Tiandho

In the general theory of relativity (GTR), black holes are defined as objects with very strong gravitational fields even light can not escape. Therefore, according to GTR black hole can be viewed as a non-thermodynamic object. The worldview of a black hole began to change since Hawking involves quantum field theory to study black holes and found that black holes have temperatures that analogous to black body radiation. In the theory of quantum gravity there is a term of the minimum length of an object known as the Planck length that demands a revision of Heisenberg's uncertainty principle into a Generalized Uncertainty Principle (GUP). Based on the relationship between the momentum uncertainty and the characteristic energy of the photons emitted by a black hole, the temperature and entropy of the non-stationary black hole (Vaidya-Bonner black hole) were calculated. The non-stationary black hole was chosen because it more realistic than static black holes to describe radiation phenomena. Because the black hole is dynamic then thermodynamics studies are conducted on both black hole horizons: the apparent horizon and its event horizon. The results showed that the dominant correction term of the temperature and entropy of the Vaidya-Bonner black hole are logarithmic.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Wajiha Javed ◽  
Rimsha Babar

This paper is devoted to study charged fermion particles tunneling through the horizon of Kerr-Newman-AdS black hole surrounded by quintessence by using Hamilton-Jacobi ansatz. In our analysis, we investigate Hawking temperature as well as quantum corrected Hawking temperature on account of generalized uncertainty principle. Moreover, we discuss the effects of correction parameter β on the corrected Hawking temperature Te-H, graphically. We conclude that the temperature Te-H vanishes when β=100, whereas for β<100 and β>100, the temperature turns out to be positive and negative, respectively. We observe that the graphs of Te-H w.r.t. quintessence parameter α exhibit behavior only for the particular ranges, i.e., 0<α<1/6, charge 0<Q≤1, and rotation parameter 0<a≤1. For smaller and larger values of negative Λ, as horizon increases, the temperature decreases and increases, respectively.


Sign in / Sign up

Export Citation Format

Share Document