Electromagnetic effects on the stability of anisotropic cylinder

2020 ◽  
Vol 35 (15) ◽  
pp. 2050124
Author(s):  
M. Sharif ◽  
Qanitah Ama-Tul-Mughani

This paper is devoted to analyzing the stability of charged anisotropic cylinder using the radial perturbation scheme. For this purpose, we consider the non-static cylindrically symmetric self-gravitating system and apply both Eulerian as well as Lagrangian approaches to establish a linearized perturbed form of dynamical equations. The conservation of baryon number is used to evaluate perturbed radial pressure in terms of an adiabatic index. A variational principle is developed to find a characteristic frequency which helps to examine the combined effect of charge and anisotropy on the stability of gaseous star. It is found that dynamical instability can be prevented until the radius of cylinder exceeds the limit [Formula: see text] and anisotropy increases the instability up to the limiting value of [Formula: see text]. Finally, we conclude that the system becomes more stable by increasing the definite amount of charge gradually.

2019 ◽  
Vol 35 (05) ◽  
pp. 2050009 ◽  
Author(s):  
M. Sharif ◽  
Qanitah Ama-Tul-Mughani

In this paper, we consider a non-static cylindrically symmetric self-gravitating system with anisotropic matter configuration and investigate its stability regions by using a homogenous model. We establish perturbed form of dynamical equations by using Eulerian and Lagrangian approaches. The conservation of baryon number is applied to obtain adiabatic index as well as perturbed pressure. A variational principle is used to find characteristic frequency which helps to compute the instability criteria. It is found that dynamical instability can be prevented till the radius of a cylinder exceeds the limit R[Formula: see text]18. We conclude that the system becomes unstable against radial oscillations as the radial pressure increases relative to tangential pressure.


2021 ◽  
Vol 30 (04) ◽  
pp. 2150027
Author(s):  
I. Noureen ◽  
Usman-ul-Haq ◽  
S. A. Mardan

In this work, the evolution of spherically symmetric charged anisotropic viscous fluids is discussed in framework of [Formula: see text] gravity. In order to conduct the analysis, modified Einstein Maxwell field equations are constructed. Nonzero divergence of modified energy momentum tensor is taken that implicates dynamical equations. The perturbation scheme is applied to dynamical equations for stability analysis. The stability analysis is carried out in Newtonian and post-Newtonian limits. It is observed that charge, fluid distribution, electromagnetic field, viscosity and mass of the celestial objects greatly affect the collapsing process as well as stability of stars.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750104
Author(s):  
M. Sharif ◽  
Ayesha Ikram

The aim of this paper is to study the dynamical instability of expansion-free spherically symmetric anisotropic fluid in the framework of [Formula: see text] gravity. We apply perturbation scheme of the first-order to the metric functions as well as matter variables and construct modified field equations for both static and perturbed configurations using power-law [Formula: see text] model. To discuss the instability dynamics, we use the contracted Bianchi identities to formulate the dynamical equations in both Newtonian and post-Newtonian regimes. It is found that the range of instability is independent of adiabatic index for expansion-free fluid but depends on anisotropic pressures, energy density and Gauss–Bonnet (GB) terms.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850047 ◽  
Author(s):  
M. Zubair ◽  
Hina Azmat ◽  
Ifra Noureen

In this paper, we have analyzed the role of a viable [Formula: see text] model, i.e. [Formula: see text], while exploring the unstable regions of cylindrically symmetric gravitational source, where, [Formula: see text] and [Formula: see text] correspond to the Ricci invariant and trace of energy momentum tensor, respectively. The matter distribution is considered to be anisotropic and gravitating system evolves under zero expansion condition. The collapse equation of cylindrical star has been obtained by applying perturbation scheme on modified field equations and conservation equations. Dynamical instability has been discussed in N and pN regimes, stability constraints have also been developed. We found that adiabatic index [Formula: see text] is meaningless for the discussion of stability of gravitating sources carrying expansion-free condition, and stability variations are determined by physical properties of the fluid.


Author(s):  
Steven E. Vigdor

Chapter 4 deals with the stability of the proton, hence of hydrogen, and how to reconcile that stability with the baryon number nonconservation (or baryon conservation) needed to establish a matter–antimatter imbalance in the infant universe. Sakharov’s three conditions for establishing a matter–antimatter imbalance are presented. Grand unified theories and experimental searches for proton decay are described. The concept of spontaneous symmetry breaking is introduced in describing the electroweak phase transition in the infant universe. That transition is treated as the potential site for introducing the imbalance between quarks and antiquarks, via either baryogenesis or leptogenesis models. The up–down quark mass difference is presented as essential for providing the stability of hydrogen and of the deuteron, which serves as a crucial stepping stone in stellar hydrogen-burning reactions that generate the energy and elements needed for life. Constraints on quark masses from lattice QCD calculations and violations of chiral symmetry are discussed.


2014 ◽  
Vol 23 (03) ◽  
pp. 1450013 ◽  
Author(s):  
Shiwu Chen ◽  
Qin Li ◽  
Jianfeng Xu ◽  
Li Gao ◽  
Chengjun Xia

We investigate the properties of strangelets at zero temperature with a new quark model in which the linear confinement and one-gluon-exchange (OGE) interactions are integrated as a whole. The charge, parameters dependence and the stability of strangelets are discussed. Our results showed that the OGE interaction lowers the energy of a strangelet, and consequently makes its stable radius smaller than that in the case of not including this interaction, and less than that of a nucleus with the same baryon number. Therefore, the strangelet in the present model has more chance to be absolutely stable.


2006 ◽  
Vol 15 (01) ◽  
pp. 259-272
Author(s):  
TSAN UNG CHAN

Positive baryon numbers (A>0) and positive lepton numbers (L>0) characterize matter particles while negative baryon numbers and negative lepton numbers characterize antimatter particles. Matter particles and antimatter particles belong to two distinct classes of particles. Matter neutral particles are particles characterized by both zero baryon number and zero lepton number. This third class of particles includes mesons formed by a quark and an antiquark pair (a pair of matter particle and antimatter particle) and bosons which are messengers of known interactions (photons for electromagnetism, W and Z bosons for the weak interaction, gluons for the strong interaction). The antiparticle of a matter particle belongs to the class of antimatter particles, the antiparticle of an antimatter particle belongs to the class of matter particles. The antiparticle of a matter neutral particle belongs to the same class of matter neutral particles. A truly neutral particle is a particle identical with its antiparticle; it belongs necessarily to the class of matter neutral particles. All known interactions of the Standard Model conserve baryon number and lepton number; matter cannot be created or destroyed via a reaction governed by these interactions. Conservation of baryon and lepton number parallels conservation of atoms in chemistry; the number of atoms of a particular species in the reactants must equal the number of those atoms in the products. These laws of conservation valid for interaction involving matter particles are indeed valid for any particles (matter particles characterized by positive numbers, antimatter particles characterized by negative numbers, and matter neutral particles characterized by zero). Interactions within the framework of the Standard Model which conserve both matter and charge at the microscopic level cannot explain the observed asymmetry of our Universe. The strong interaction was introduced to explain the stability of nuclei: there must exist a powerful force to compensate the electromagnetic force which tends to cause protons to fly apart. The weak interaction with laws of conservation different from electromagnetism and the strong interaction was postulated to explain beta decay. Our observed material and neutral universe would signify the existence of another interaction that did conserve charge but did not conserve matter.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550034 ◽  
Author(s):  
Piyali Bhar ◽  
Ayan Banerjee

In this paper, we construct thin-shell wormholes in (2 + 1)-dimensions from noncommutative BTZ black hole by applying the cut-and-paste procedure implemented by Visser. We calculate the surface stresses localized at the wormhole throat by using the Darmois–Israel formalism and we find that the wormholes are supported by matter violating the energy conditions. In order to explore the dynamical analysis of the wormhole throat, we consider that the matter at the shell is supported by dark energy equation of state (EoS) p = ωρ with ω < 0. The stability analysis is carried out of these wormholes to linearized spherically symmetric perturbations around static solutions. Preserving the symmetry we also consider the linearized radial perturbation around static solution to investigate the stability of wormholes which was explored by the parameter β (speed of sound).


2021 ◽  
Vol 36 (21) ◽  
pp. 2150153
Author(s):  
Joaquin Estevez-Delgado ◽  
Noel Enrique Rodríguez Maya ◽  
José Martínez Peña ◽  
Arthur Cleary-Balderas ◽  
Jorge Mauricio Paulin-Fuentes

A stellar model with an electrically charged anisotropic fluid as a source of matter is presented. The radial pressure is described by a Chaplygin state equation, [Formula: see text], while the anisotropy [Formula: see text] is annulled in the center of the star [Formula: see text] is regular and [Formula: see text], the electric field, is also annulled in the center. The density pressures and the tangential speed of sound are regular, while the radial speed of sound is monotonically increasing. The model is physically acceptable and meets the stability criteria of Harrison–Zeldovich–Novikov and in respect of the cracking concept the solution is unstable in the region of the center and potentially stable near the surface. A graphic description is presented for the case of an object with a compactness rate [Formula: see text], mass [Formula: see text] and radius [Formula: see text] km that matches the star Vela X-1. Also, the interval of the central density [Formula: see text], which is consistent with the expected magnitudes for this type of stars, which shows that the behavior is accurate for describing compact objects.


2011 ◽  
Vol 142 ◽  
pp. 107-110
Author(s):  
Ming Jun Han ◽  
You Tang Li ◽  
Ping Qiu ◽  
Xin Zhi Wang

The nonlinear dynamical equations are established by using the method of quasi-shells for three-dimensional shallow spherical shells with circular bottom. Displacement mode that meets the boundary conditions of fixed edges is given by using the method of the separate variable, A nonlinear forced vibration equation containing the second and the third order is derived by using the method of Galerkin. The stability of the equilibrium point is studied by using the Floquet exponent.


Sign in / Sign up

Export Citation Format

Share Document