scholarly journals Negative energy states in the Reissner–Nordström metric

2021 ◽  
pp. 2150120
Author(s):  
O. B. Zaslavskii

We consider electrogeodesics on which the energy [Formula: see text] in the Reissner–Nordström metric. It is shown that outside the horizon there is exactly one turning point inside the ergoregion for such particles. This entails that such a particle passes through an infinite chain of black–white hole regions or terminates in the singularity. These properties are relevant for two scenarios of high energy collisions in which the presence of white holes is essential.

According to a theory proposed by Dirac one has to picture the vacuum as filled with an infinite number of electrons of negative kinetic energy, the electric density of which is, however, unobservable. One can observe only deviations from this "normal" density which either consist of an addition of electrons in states of positive energy or absence of electrons from some of the negative energy states (positive electrons). The discovery of the positive electron and the observed magnitude of the processes involving it give strong support to this view. This theory, as it stands, however, is not complete because it makes use of infinite quantities which are inadmissible in physical equations. It therefore must be understood (and was meant so by Dirac) to be a physical picture showing a way in which the quantum mechanical equations can probably be modified in order to give account of the positive electron and to solve the difficulty connected with the states of negative energy.


1949 ◽  
Vol 75 (5) ◽  
pp. 910-911 ◽  
Author(s):  
Otto Halpern ◽  
Harvey Hall

2004 ◽  
Vol 19 (32) ◽  
pp. 5561-5583 ◽  
Author(s):  
YOSHINOBU HABARA ◽  
HOLGER B. NIELSEN ◽  
MASAO NINOMIYA

We consider the long standing problem in field theories of bosons that the boson vacuum does not consist of a "sea," unlike the fermion vacuum. We show with the help of supersymmetry considerations that the boson vacuum indeed does also consist of a sea in which the negative energy states are all "filled," analogous to the Dirac sea of the fermion vacuum, and that a hole produced by the annihilation of one negative energy boson is an antiparticle. Here, we must admit that it is only possible if we allow — as occurs in the usual formalism anyway — that the "Hilbert space" for the single particle bosons is not positive definite. This might be formally coped with by introducing the notion of a double harmonic oscillator, which is obtained by extending the condition imposed on the wave function. This double harmonic oscillator includes not only positive energy states but also negative energy states. We utilize this method to construct a general formalism for a boson sea analogous to the Dirac sea, irrespective of the existence of supersymmetry. The physical result is consistent with that of the ordinary second quantization formalism. We finally suggest applications of our method to the string theories.


Sign in / Sign up

Export Citation Format

Share Document