scholarly journals Perturbed thermodynamics and thermodynamic geometry of a static black hole in f (R) gravity

2021 ◽  
pp. 2150212
Author(s):  
Sudhaker Upadhyay ◽  
Saheb Soroushfar ◽  
Reza Saffari

In this paper, we consider a static black hole in [Formula: see text] gravity. We recapitulate the expression for corrected thermodynamic entropy of this black hole due to small fluctuations around equilibrium. Also, we study the geometrothermodynamics (GTD) of this black hole and investigate the adaptability of the curvature scalar of geothermodynamic methods with phase transition points of this black hole. Moreover, we study the effect of correction parameter on thermodynamic behavior of this black hole. We observe that the singular point of the curvature scalar of Ruppeiner metric coincides completely with zero point of the heat capacity and the deviation occurs with increasing correction parameter.

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Alexis Larrañaga ◽  
Natalia Herrera ◽  
Juliana Garcia

The thermodynamics of the noncommutative Schwarzschild black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD). Using a thermodynamic metric which is invariant with respect to Legendre transformations, we determine the geometry of the space of equilibrium states and show that phase transitions, which correspond to divergencies of the heat capacity, are represented geometrically as singularities of the curvature scalar. This further indicates that the curvature of the thermodynamic metric is a measure of thermodynamic interaction.


2016 ◽  
Vol 25 (01) ◽  
pp. 1650010 ◽  
Author(s):  
S. H. Hendi ◽  
S. Panahiyan ◽  
B. Eslam Panah

In this paper, we take into account the black-hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. At first, we consider the cosmological constant as a dynamical pressure to study the phase transitions and analogy of the black holes with the Van der Waals liquid–gas system in the extended phase space. We make a comparison between linear and nonlinear electrodynamics and show that the lowest critical temperature belongs to Maxwell theory. Also, we make some arguments regarding how power of nonlinearity brings the system to Schwarzschild-like and Reissner–Nordström-like limitations. Next, we study the critical behavior of the system in the context of heat capacity. We show that critical behavior of system is similar to the one in phase diagrams of extended phase space. We also extend the study of phase transition points through geometrical thermodynamics (GTs). We introduce two new thermodynamical metrics for extended phase space and show that divergencies of thermodynamical Ricci scalar (TRS) of the new metrics coincide with phase transition points of the system. Then, we introduce a new method for obtaining critical pressure and horizon radius by considering denominator of the heat capacity.


2013 ◽  
Vol 28 (10) ◽  
pp. 1350029 ◽  
Author(s):  
M. M. STETSKO

We investigate a microscopic black hole in the case of modified generalized uncertainty principle with a minimal uncertainty in position as well as in momentum. We calculate thermodynamical functions of a Schwarzschild black hole such as temperature, entropy and heat capacity. It is shown that the incorporation of minimal uncertainty in momentum leads to minimal temperature of a black hole. Minimal temperature gives rise to appearance of a phase transition. Emission rate equation and black hole's evaporation time are also obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Euro Spallucci ◽  
Anais Smailagic

We study the phases of a Schwarzschild black hole in the Anti-deSitter background geometry. Exploiting fluid/gravity duality, we construct the Maxwell equal area isotherm   in the temperature-entropy plane, in order to eliminate negative heat capacity BHs. The construction we present here is reminiscent of the isobar cut in the pressure-volume plane which eliminates unphysical part of the Van der Walls curves below the critical temperature. Our construction also modifies the Hawking-Page phase transition. Stable BHs are formed at the temperature , while pure radiation persists for . turns out to be below the standard Hawking-Page temperature and there are no unstable BHs as in the usual scenario. Also, we show that, in order to reproduce the correct BH entropy , one has to write a black hole equation of state, that is, , in terms of the geometrical volume .


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shao-Wen Wei ◽  
Yu-Xiao Liu ◽  
Chun-E. Fu ◽  
Hai-Tao Li

We study the properties and thermodynamic stability of the plane symmetry black hole from the viewpoint of geometry. We find that the Weinhold curvature gives the first-order phase transition atN=1, whereNis a parameter of the plane symmetry black hole while the Ruppeiner one shows first-order phase transition points for arbitraryN≠1. Considering the Legendre invariant proposed by Quevedo et al., we obtain a unified geometry metric, which contains the information of the second-order phase transition. So, the first-order and second-order phase transitions can be both reproduced from the geometry curvatures. The geometry is also found to be curved, and the scalar curvature goes to negative infinity at the Davie phase transition points beyond semiclassical approximation.


2016 ◽  
Vol 32 (02) ◽  
pp. 1750017 ◽  
Author(s):  
Huai-Fan Li ◽  
Meng-Sen Ma ◽  
Ya-Qin Ma

We study the thermodynamic properties of Schwarzschild–de Sitter (SdS) black hole and Reissner–Nordström–de Sitter (RNdS) black hole in view of global and effective thermodynamic quantities. Making use of the effective first law of thermodynamics, we can derive the effective thermodynamic quantities of de Sitter black holes. It is found that these effective thermodynamic quantities also satisfy Smarr-like formula. Especially, the effective temperatures are nonzero in the Nariai limit. By calculating heat capacity and Gibbs free energy, we find SdS black hole is always thermodynamically stable and RNdS black hole may undergoes phase transition at some points.


2011 ◽  
Vol 696 (1-2) ◽  
pp. 156-162 ◽  
Author(s):  
Rabin Banerjee ◽  
Sumit Ghosh ◽  
Dibakar Roychowdhury

Universe ◽  
2018 ◽  
Vol 4 (5) ◽  
pp. 66 ◽  
Author(s):  
Sergey Kruglov

The Bronnikov model of nonlinear electrodynamics is investigated in general relativity. The magnetic black hole is considered and we obtain a solution giving corrections to the Reissner-Nordström solution. In this model spacetime at r → ∞ becomes Minkowski’s spacetime. We calculate the magnetic mass of the black hole and the metric function. At some parameters of the model there can be one, two or no horizons. The Hawking temperature and the heat capacity of black holes are calculated. We show that a second-order phase transition takes place and black holes are thermodynamically stable at some range of parameters.


Sign in / Sign up

Export Citation Format

Share Document