The behaviors of the solutions of the quark gap equation in the NJL model with the self-consistent mean field approximation

Author(s):  
Zu-Qing Wu ◽  
Jia-Lun Ping ◽  
Hong-Shi Zong

In this paper, we use the self-consistent mean field approximation to study the Quantum Chromodynamics (QCD) phase transition. In the self-consistent mean field approximation of the Nambu–Jona-Lasinio (NJL) model, a parameter [Formula: see text] is introduced, which reflects the weight of “direct” channel and the “exchange” channel and needs to be determined by experiments (as mentioned in a recent work [T. Zhao, W. Zheng, F. Wang, C.-M. Li, Y. Yan, Y.-F. Huang and H.-S. Zong, Phys. Rev. D 100, 043018 (2019)], the results with [Formula: see text] are in good agreement with astronomical observation data on the latest binary neutron star merging. This indicates that the contribution of “exchange” channel should be considered, and [Formula: see text] is a possible choice). By comparing the results with different parameter [Formula: see text]’s ([Formula: see text], [Formula: see text] and [Formula: see text]), we study the influence of “exchange” channel on the behavior of the solutions of the quark gap equation and the critical point of chiral phase transition. Our results show that the second-order chiral phase turns to the crossover from the chiral limit to the non-chiral limit around [Formula: see text] in the case of [Formula: see text]. The difference of the quark mass with different [Formula: see text]’s mainly occurs in the intermediate temperatures for the different fixed chemical potentials. At zero temperature and the chemical potential [Formula: see text] there will be two solutions (including a meta-stable solution) of gap equation with [Formula: see text], and as [Formula: see text] increases it will be only one solution left (the meta-stable solution will disappear until [Formula: see text]). Besides, the discrepancy of the critical temperature (above which the pseudo-Wigner solution and negative Nambu solution will disappear) in the three cases of [Formula: see text] will become large when the chemical potential increases.

2016 ◽  
Vol 31 (34) ◽  
pp. 1650175 ◽  
Author(s):  
Abdel Nasser Tawfik ◽  
Abdel Magied Diab ◽  
M. T. Hussein

In mean field approximation, the grand canonical potential of SU(3) Polyakov linear-[Formula: see text] model (PLSM) is analyzed for chiral phase transition, [Formula: see text] and [Formula: see text] and for deconfinement order-parameters, [Formula: see text] and [Formula: see text] of light- and strange-quarks, respectively. Various PLSM parameters are determined from the assumption of global minimization of the real part of the potential. Then, we have calculated the subtracted condensates [Formula: see text]. All these results are compared with recent lattice QCD simulations. Accordingly, essential PLSM parameters are determined. The modeling of the relaxation time is utilized in estimating the conductivity properties of the QCD matter in thermal medium, namely electric [Formula: see text] and heat [Formula: see text] conductivities. We found that the PLSM results on the electric conductivity and on the specific heat agree well with the available lattice QCD calculations. Also, we have calculated bulk and shear viscosities normalized to the thermal entropy, [Formula: see text] and [Formula: see text], respectively, and compared them with recent lattice QCD. Predictions for [Formula: see text] and [Formula: see text] are introduced. We conclude that our results on various transport properties show some essential ingredients, that these properties likely come up with, in studying QCD matter in thermal and dense medium.


2020 ◽  
Vol 35 (39) ◽  
pp. 2050321 ◽  
Author(s):  
Qianyi Wang ◽  
Tong Zhao ◽  
Hongshi Zong

Following our recently proposed self-consistent mean field approximation approach, we have done some researches on the chiral phase transition of strong interaction matter within the framework of Nambu-Jona-Lasinio (NJL) model. The chiral susceptibility and equation of state (EOS) are computed in this work for both two-flavor and three-flavor quark matter for contrast. The Pauli–Villars scheme, which can preserve gauge invariance, is used in this paper. Moreover, whether the three-flavor quark matter is more stable than the two-flavor quark matter or not in quark stars is discussed in this work. In our model, when the bag constant are the same, the two-flavor quark matter has a higher pressure than the three-flavor quark matter, which is different from what Witten proposed in his pioneering work.


Sign in / Sign up

Export Citation Format

Share Document