scholarly journals SU(3) Polyakov linear-sigma model: Conductivity and viscous properties of QCD matter in thermal medium

2016 ◽  
Vol 31 (34) ◽  
pp. 1650175 ◽  
Author(s):  
Abdel Nasser Tawfik ◽  
Abdel Magied Diab ◽  
M. T. Hussein

In mean field approximation, the grand canonical potential of SU(3) Polyakov linear-[Formula: see text] model (PLSM) is analyzed for chiral phase transition, [Formula: see text] and [Formula: see text] and for deconfinement order-parameters, [Formula: see text] and [Formula: see text] of light- and strange-quarks, respectively. Various PLSM parameters are determined from the assumption of global minimization of the real part of the potential. Then, we have calculated the subtracted condensates [Formula: see text]. All these results are compared with recent lattice QCD simulations. Accordingly, essential PLSM parameters are determined. The modeling of the relaxation time is utilized in estimating the conductivity properties of the QCD matter in thermal medium, namely electric [Formula: see text] and heat [Formula: see text] conductivities. We found that the PLSM results on the electric conductivity and on the specific heat agree well with the available lattice QCD calculations. Also, we have calculated bulk and shear viscosities normalized to the thermal entropy, [Formula: see text] and [Formula: see text], respectively, and compared them with recent lattice QCD. Predictions for [Formula: see text] and [Formula: see text] are introduced. We conclude that our results on various transport properties show some essential ingredients, that these properties likely come up with, in studying QCD matter in thermal and dense medium.

2019 ◽  
Vol 34 (31) ◽  
pp. 1950199 ◽  
Author(s):  
Abdel Nasser Tawfik ◽  
Abdel Magied Diab ◽  
M. T. Ghoneim ◽  
H. Anwer

The SU(3) Polyakov linear-sigma model (PLSM) in mean-field approximation is utilized in analyzing the chiral condensates [Formula: see text], [Formula: see text], [Formula: see text] and the deconfinement order parameters [Formula: see text], [Formula: see text], at finite isospin asymmetry. The bulk thermodynamics including pressure density, interaction measure, susceptibility and second-order correlations with baryon, strange and electric charge quantum numbers are studied in thermal and dense medium. The PLSM results are confronted to the available lattice quantum chromodynamics (QCD) calculations. The excellent agreement obtained strengthens the reliability of fixing the PLSM parameters and therefore supports further predictions even beyond the scope of the lattice QCD numerical applicability. From the QCD phase structure at finite isospin chemical potential [Formula: see text], we find that the pseudocritical temperatures decrease with the increase in [Formula: see text]. We conclude that the QCD phase structure in [Formula: see text] plane seems to extend the one in [Formula: see text] plane.


2018 ◽  
Vol 172 ◽  
pp. 02003
Author(s):  
Alejandro Ayala ◽  
J. A. Flores ◽  
L. A. Hernández ◽  
S. Hernández-Ortiz

We use the linear sigma model coupled to quarks to compute the effective potential beyond the mean field approximation, including the contribution of the ring diagrams at finite temperature and baryon density. We determine the model couplings and use them to study the phase diagram in the baryon chemical potential-temperature plane and to locate the Critical End Point.


2009 ◽  
Vol 24 (20) ◽  
pp. 1617-1629 ◽  
Author(s):  
M. ABU-SHADY

A linear sigma model with logarithmic mesonic potential is proposed for computing nucleon properties. The logarithmic potential is based on some aspects of QCD. The field equations have been solved in mean-field approximation. Obtained results for nucleon properties are good in comparison with the original model and agree with measured data.


2020 ◽  
Vol 35 (39) ◽  
pp. 2050321 ◽  
Author(s):  
Qianyi Wang ◽  
Tong Zhao ◽  
Hongshi Zong

Following our recently proposed self-consistent mean field approximation approach, we have done some researches on the chiral phase transition of strong interaction matter within the framework of Nambu-Jona-Lasinio (NJL) model. The chiral susceptibility and equation of state (EOS) are computed in this work for both two-flavor and three-flavor quark matter for contrast. The Pauli–Villars scheme, which can preserve gauge invariance, is used in this paper. Moreover, whether the three-flavor quark matter is more stable than the two-flavor quark matter or not in quark stars is discussed in this work. In our model, when the bag constant are the same, the two-flavor quark matter has a higher pressure than the three-flavor quark matter, which is different from what Witten proposed in his pioneering work.


Author(s):  
Zu-Qing Wu ◽  
Jia-Lun Ping ◽  
Hong-Shi Zong

In this paper, we use the self-consistent mean field approximation to study the Quantum Chromodynamics (QCD) phase transition. In the self-consistent mean field approximation of the Nambu–Jona-Lasinio (NJL) model, a parameter [Formula: see text] is introduced, which reflects the weight of “direct” channel and the “exchange” channel and needs to be determined by experiments (as mentioned in a recent work [T. Zhao, W. Zheng, F. Wang, C.-M. Li, Y. Yan, Y.-F. Huang and H.-S. Zong, Phys. Rev. D 100, 043018 (2019)], the results with [Formula: see text] are in good agreement with astronomical observation data on the latest binary neutron star merging. This indicates that the contribution of “exchange” channel should be considered, and [Formula: see text] is a possible choice). By comparing the results with different parameter [Formula: see text]’s ([Formula: see text], [Formula: see text] and [Formula: see text]), we study the influence of “exchange” channel on the behavior of the solutions of the quark gap equation and the critical point of chiral phase transition. Our results show that the second-order chiral phase turns to the crossover from the chiral limit to the non-chiral limit around [Formula: see text] in the case of [Formula: see text]. The difference of the quark mass with different [Formula: see text]’s mainly occurs in the intermediate temperatures for the different fixed chemical potentials. At zero temperature and the chemical potential [Formula: see text] there will be two solutions (including a meta-stable solution) of gap equation with [Formula: see text], and as [Formula: see text] increases it will be only one solution left (the meta-stable solution will disappear until [Formula: see text]). Besides, the discrepancy of the critical temperature (above which the pseudo-Wigner solution and negative Nambu solution will disappear) in the three cases of [Formula: see text] will become large when the chemical potential increases.


2010 ◽  
Vol 19 (10) ◽  
pp. 2051-2062 ◽  
Author(s):  
M. ABU-SHADY

The dependence of the nucleon mass on the pion mass is studied in the framework of the extended quark sigma model. We apply the modified quark sigma model to analyze the pion–nucleon sigma term. Analytic expressions are derived using the Feynman–Hellman theorem. The field equations are solved in the mean-field approximation. The results are compared with the CP-PACS group and the cloudy bag model. The results indicate that the extended linear sigma model provides good agreement compared to other models in the mean-field approximation.


2011 ◽  
Vol 20 (06) ◽  
pp. 1509-1517 ◽  
Author(s):  
T. S. T. ALI

The sensitivity of static nucleon properties (magnetic moment, axial-vector coupling constant gA, pion–nucleon coupling constant gπNN and sigma commutator term σπN) to the quark and sigma masses have been investigated in the mean-field approximation. We have solved the field equations in the mean-field approximation with different sets of model parameters. Good results have been obtained in comparison with the other models and experimental data.


2008 ◽  
Vol 23 (27n30) ◽  
pp. 2469-2472 ◽  
Author(s):  
CHIHIRO SASAKI ◽  
BENGT FRIMAN ◽  
KRZYSZTOF REDLICH

The thermodynamics of a first-order chiral phase transition is considered in the presence of spinodal phase separation using the Nambu-Jona-Lasinio model in the mean field approximation. We focus on the behavior of conserved charge fluctuations. We show that in non-equilibrium the specific heat and charge susceptibilities diverge as the system crosses the isothermal spinodal lines.


2015 ◽  
Vol 24 (04) ◽  
pp. 1550025 ◽  
Author(s):  
Hui Zhang ◽  
Renda Dong ◽  
Song Shu

In the mean-field approximation, we have studied the soliton which is embedded in a thermal medium within the chiral soliton model. The energy of the soliton or the baryon mass in the thermal medium has been carefully evaluated, in which we emphasize that the thermal effective potential in the soliton energy should be properly treated in order to derive a finite and well-defined baryon mass out of the thermal background. The result of the baryon mass at finite temperatures and densities in chiral soliton model are clearly presented.


Sign in / Sign up

Export Citation Format

Share Document