Z–Z' MIXING IN EXTENDED GAUGE MODELS FROM LEP 1990 DATA

1991 ◽  
Vol 06 (28) ◽  
pp. 2557-2567 ◽  
Author(s):  
G. BHATTACHARYA ◽  
A. DATTA ◽  
S. N. GANGGUL ◽  
A. RAYCHAUDHURI

We have studied Z–Z' mixing in the extended gauge models of left-right and extra U(1) types. This has been carried out by performing simultaneous fits to the combined data of cross sections and asymmetries from the four LEP experiments which have collected over 550,000 Z0 decays in 1990. Two methods have been adopted to determine the mixing angle ξ0 by carrying out: (a) Standard Model dependent fits, where we calculate ρf and sin 2θf from the Standard Model, and (b) Standard Model independent fit, where we keep [Formula: see text] and [Formula: see text] as free parameters. Fitted values of the mixing angle ξ0, and deviation of the ρ parameter due to Z–Z' mixing are discussed.

1991 ◽  
Vol 06 (32) ◽  
pp. 2921-2933 ◽  
Author(s):  
G. BHATTACHARYYA ◽  
A. DATTA ◽  
S. N. GANGULI ◽  
A. RAYCHAUDHURI

We have studied the bounds on mixing angles of fermions with their exotic partners which may stem from different possibilities of new physics. The tree level effects of mixing have been taken care of by a modification of the effective vector and axial-vector couplings of Z to the fermions. The radiative corrections arising from new physics of exotic fermions are assumed to be negligible; as a result the ρ parameter and the effective sin 2 θw are calculated within the framework of the Standard Model. Mixing angles have been treated as free parameters during simultaneous fits to the combined data of cross-sections and lepton asymmetries from the four LEP experiments which have collected over 550,000 Z0 decays in 1990. Fitted values of mixing angles and the upper bounds at 90% C. L. are discussed.


1992 ◽  
Vol 07 (09) ◽  
pp. 1853-1873 ◽  
Author(s):  
S. BANERJEE ◽  
S.N. GANGULI ◽  
A. GURTU

The four detectors ALEPH, DELPHI, L3 and OPAL have collected ≈550,000 Z0 decays during the LEP run in 1990. We have made model-independent simultaneous fits to the LEP data to determine the Z0 parameters. The mass and widths of Z0 are Mz=91.177± 0.006±0.02 (LEP) GeV , Γz=2.481±0.010 GeV , Γ had =1.734±0.010 GeV and Γ lept =83.0 ± 0.4 MeV . The number of ν families is determined to be Nν=3.01±0.05. Simultaneous fits are performed within the Standard Model framework to the LEP data and constraining the value of sin 2 θw from the [Formula: see text] colliders we get the following values for top mass, electroweak mixing angle sin 2 θw and the radiative correction [Formula: see text], sin 2 θw=0.230±0.004 and ∆r=0.056±0.011.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
E. Cortina Gil ◽  
◽  
A. Kleimenova ◽  
E. Minucci ◽  
S. Padolski ◽  
...  

Abstract The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 109 tagged π0 mesons from K+ → π+π0(γ), searching for the decay of the π0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4.4 × 10−9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit on the branching ratio for the decay K+ → π+X, where X is a particle escaping detection with mass in the range 0.110–0.155 GeV/c2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aoife Bharucha ◽  
Diogo Boito ◽  
Cédric Méaux

Abstract In this paper we consider the decay D+ → π+ℓ+ℓ−, addressing in particular the resonance contributions as well as the relatively large contributions from the weak annihilation diagrams. For the weak annihilation diagrams we include known results from QCD factorisation at low q2 and at high q2, adapting the existing calculation for B decays in the Operator Product Expansion. The hadronic resonance contributions are obtained through a dispersion relation, modelling the spectral functions as towers of Regge-like resonances in each channel, as suggested by Shifman, imposing the partonic behaviour in the deep Euclidean. The parameters of the model are extracted using e+e− → (hadrons) and τ → (hadrons) + ντ data as well as the branching ratios for the resonant decays D+ → π+R(R → ℓ+ℓ−), with R = ρ, ω, and ϕ. We perform a thorough error analysis, and present our results for the Standard Model differential branching ratio as a function of q2. Focusing then on the observables FH and AFB, we consider the sensitivity of this channel to effects of physics beyond the Standard Model, both in a model independent way and for the case of leptoquarks.


2007 ◽  
Vol 22 (31) ◽  
pp. 5889-5908 ◽  
Author(s):  
M. Abbas ◽  
W. Emam ◽  
S. Khalil ◽  
M. Shalaby

We present the phenomenology of the low scale U(1)B–L extension of the standard model and its implications at LHC. We show that this model provides a natural explanation for the presence of three right-handed neutrinos and can naturally account the observed neutrino masses and mixing. We study the decay and production of the extra gauge boson and the SM singlet scalar (heavy Higgs) predicted in this type of models. We find that the cross sections of the SM-like Higgs production are reduced by ~ 20% – 30%, while its decay branching ratios remain intact. The extra Higgs has relatively small cross sections and the branching ratios of Z′ → l+l− are of order ~ 20% compared to ~ 3% of the SM results.


2001 ◽  
Vol 16 (supp01b) ◽  
pp. 888-890
Author(s):  
◽  
BRUCE KNUTESON

We present a quasi-model-independent search for physics beyond the standard model. We define final states to be studied, and construct a rule that identifies a set of variables appropriate for any particular final state. A new algorithm ("Sleuth") searches for regions of excess in the space of those variables and quantifies the significance of any detected excess. After demonstrating the sensititvity of the method, we apply it to the semi-inclusive channel eμX collected in ≈108 pb -1 of [Formula: see text] collisions at [Formula: see text] at the DØ experiment at the Fermilab Tevatron. We find no evidence of new high pT physics in this sample.


2008 ◽  
Vol 23 (17n20) ◽  
pp. 1266-1277 ◽  
Author(s):  
WILLEM T. H. VAN OERS

Searches for parity violation in hadronic systems started soon after the evidence for parity violation in β-decay of 60 Co was presented by Madame Chien-Shiung Wu and in π and μ decay by Leon Lederman in 1957. The early searches for parity violation in hadronic systems did not reach the sensitivity required and only after technological advances in later years was parity violation unambiguously established. Within the meson-exchange description of the strong interaction, theory and experiment meet in a set of seven weak meson-nucleon coupling constants. Even today, after almost five decades, the determination of the seven weak meson-nucleon couplings is incomplete. Parity violation in nuclear systems is rather complex due to the intricacies of QCD. More straight forward in terms of interpretation are measurements of the proton-proton parity-violating analyzing power (normalized differences in scattering yields for positive and negative helicity incident beams), for which there exist three precision experiments (at 13.6, at 45, and 221 MeV). To-date, there are better possibilities for theoretical interpretation using effective field theory approaches. The situation with regard to the measurement of the parity-violating analyzing power or asymmetry in polarized electron scattering is quite different. Although the original measurements were intended to determine the electro-weak mixing angle, with the current knowledge of the electro-weak interaction and the great precision with which electro-weak radiative corrections can be calculated, the emphasis has been to study the structure of the nucleon, and in particular the strangeness content of the nucleon. A whole series of experiments (the SAMPLE experiment at MIT-Bates, the G0 experiment and HAPPEX experiments at Jefferson Laboratory (JLab), and the PVA4 experiment at MAMI) have indicated that the strange quark contributions to the charge and magnetization distributions of the nucleon are tiny. These measurements if extrapolated to zero degrees and zero momentum transfer have also provided a factor five improvement in the knowledge of the neutral weak couplings to the quarks. Choosing appropriate kinematics in parity-violating electron-proton scattering permits nucleon structure effects on the measured analyzing power to be precisely controlled. Consequently, a precise measurement of the ‘running’ of sin 2θw or the electro-weak mixing angle has become within reach. The [Formula: see text] experiment at Jefferson Laboratory is to measure this quantity to a precision of about 4%. This will either establish conformity with the Standard Model of quarks and leptons or point to New Physics as the Standard Model must be encompassed in a more general theory required, for instance, by a convergence of the three couplings (strong, electromagnetic, and weak) to a common value at the GUT scale. The upgrade of CEBAF at Jefferson Laboratory to 12 GeV, will allow a new measurement of sin 2θW in parity-violating electron-electron scattering with an improved precision to the current better measurement (the SLAC E158 experiment) of the ‘running’ of sin 2θW away from the Z0 pole. Preliminary design studies of such an experiment show that a precision comparable to the most precise individual measurements at the Z0 pole (to about ±0.00025) can be reached. The result of this experiment will be rather complementary to the [Formula: see text] experiment in terms of sensitivity to New Physics.


2019 ◽  
Vol 632 ◽  
pp. A91 ◽  
Author(s):  
Nikki Arendse ◽  
Adriano Agnello ◽  
Radosław J. Wojtak

Context. The matter sound horizon can be infered from the cosmic microwave background within the Standard Model. Independent direct measurements of the sound horizon are then a probe of possible deviations from the Standard Model. Aims. We aim at measuring the sound horizon rs from low-redshift indicators, which are completely independent of CMB inference. Methods. We used the measured product H(z)rs from baryon acoustic oscillations (BAO) together with supernovae Ia to constrain H(z)/H0 and time-delay lenses analysed by the H0LiCOW collaboration to anchor cosmological distances (∝ H0−1). Additionally, we investigated the influence of adding a sample of quasars with higher redshift with standardisable UV-Xray luminosity distances. We adopted polynomial expansions in H(z) or in comoving distances so that our inference was completely independent of any cosmological model on which the expansion history might be based. Our measurements are independent of Cepheids and systematics from peculiar motions to within percent-level accuracy. Results. The inferred sound horizon rs varies between (133 ± 8) Mpc and (138 ± 5) Mpc across different models. The discrepancy with CMB measurements is robust against model choice. Statistical uncertainties are comparable to systematics. Conclusions. The combination of time-delay lenses, supernovae, and BAO yields a distance ladder that is independent of cosmology (and of Cepheid calibration) and a measurement of rs that is independent of the CMB. These cosmographic measurements are then a competitive test of the Standard Model, regardless of the hypotheses on which the cosmology is based.


1989 ◽  
Vol 04 (20) ◽  
pp. 1945-1954 ◽  
Author(s):  
M. CIUCHINI

The 2H model that resembles the Higgs sector of the minimal N=1 SUSY version of the standard model is considered and the contribution of the charged Higgs boson to the rate of the b→sl+l− transition is studied as a function of the free parameters MH, Mt and the squared two Higgs doublet v.e.v. ratio r. It is shown that this process can be suppressed by the charged Higgs boson contribution and that in general it is not very sensitive to its presence unless (SUSY-forbidden) values of r>1 are assumed.


Sign in / Sign up

Export Citation Format

Share Document