scholarly journals MESIC MOLECULES OF LIGHT NUCLEI IN THE OSCILLATOR REPRESENTATION

1994 ◽  
Vol 09 (23) ◽  
pp. 2083-2095
Author(s):  
M. DINEYKHAN ◽  
G.V. EFIMOV

The mesic molecules (HμNZ), where H is the hydrogen isotopes (p, d, t) and NZ are nuclei with charges Z=2, 3, 4, …and masses MZ=2Zmp, are studied. The energy values of the ground state for the mesic molecules of light nuclei have been calculated by using the oscillator representation method. The dependence of the binding energies of the muonic molecules on nuclear charges and the critical values of nuclear charges are obtained.

1997 ◽  
Vol 12 (16) ◽  
pp. 1193-1207
Author(s):  
M. Dineykhan

The oscillator representation method is extended to calculate the energy spectrum of bound state systems described by axially symmetrical potentials in the parabolic system coordinates. In particular, it is applied to calculate the energy of the ground and excited states of the hydrogen atom in the uniform electric field and van der Waals field. The method gives the perturbation formulas for the analytic spectrum of the hydrogen atom in the generalized van der Waals field and defines oscillator strengths for transitions from the ground state to the perturbed manifold n=10, m=0.


2007 ◽  
Vol 22 (06) ◽  
pp. 1265-1278
Author(s):  
ABOUZEID M. SHALABY ◽  
S. T. EL-BASYOUNY

We established a resummed formula for the effective potential of [Formula: see text] scalar field theory that can mimic the true effective potential not only at the critical region but also at any point in the coupling space. We first extend the effective potential from the oscillator representation method, perturbatively, up to g3 order. We supplement perturbations by the use of a resummation algorithm, originally due to Kleinert, Thoms and Janke, which has the privilege of using the strong coupling as well as the large coupling behaviors rather than the conventional resummation techniques which use only the large order behavior. Accordingly, although the perturbation series available is up to g3 order, we found a good agreement between our resummed effective potential and the well-known features from constructive field theory. The resummed effective potential agrees well with the constructive field theory results concerning existing and order of phase transition in the absence of an external magnetic field. In the presence of the external magnetic field, as in magnetic systems, the effective potential shows nonexistence of phase transition and gives the behavior of the vacuum condensate as a monotonic increasing function of J, in complete agreement with constructive field theory methods.


Author(s):  
A. H. Wilson

The wave equation for the deuteron in its ground state is solved on the assumption that the mutual potential energy of a neutron and a proton is of the form r−1e−λr. The binding energy of the hydrogen isotope H3 is calculated approximately by the variation method.


1965 ◽  
Vol 43 (7) ◽  
pp. 1248-1258 ◽  
Author(s):  
A. Gilbert ◽  
F. S. Chen ◽  
A. G. W. Cameron

There has been discussion in the literature as to whether the cumulative number of levels in light nuclei varies more nearly as exp(const. [Formula: see text]) or exp(const. E), where E is the excitation energy. The question is examined in this paper. It is found that if one constructs "step diagrams" by plotting the cumulative number versus the energy, both formulas represent the data almost equally well. However, additional consideration of levels counted above neutron and proton binding energies shows that exp(const. [Formula: see text]) fails badly to represent the data, whereas exp(const. E) continues to give good fits. In either case E may be measured above an arbitrary ground-state energy E0. If the satisfactory formula is written in the form exp(E–E0)/T, then it is found that the dependence of the slope on mass number may be expressed in approximately the form T−1 = 0.0165A MeV−1, but there are significant deviations from this relation apparently related to shell structure. The intercepts E0 are quite variable but are roughly clustered according to the oddness or evenness of the neutron and proton numbers of the nucleus.


The r. m. s. radius and the binding energy of oxygen 16 are calculated for several different internueleon potentials. These potentials all fit the low-energy data for two nucleons, they have hard cores of differing radii, and they include the Gammel-Thaler potential (core radius 0·4 fermi). The calculated r. m. s. radii range from 1·5 f for a potential with core radius 0·2 f to 2·0 f for a core radius 0·6 f. The value obtained from electron scattering experiments is 2·65 f. The calculated binding energies range from 256 MeV for a core radius 0·2 f to 118 MeV for core 0·5 f. The experimental value of binding energy is 127·3 MeV. The 25% discrepancy in the calculated r. m. s. radius may be due to the limitations of harmonic oscillator wave functions used in the unperturbed system.


1990 ◽  
Vol 41 (7) ◽  
pp. 4049-4051 ◽  
Author(s):  
I. C. da Cunha Lima ◽  
M. Fabbri ◽  
A. Ferreira da Silva ◽  
A. Troper

Sign in / Sign up

Export Citation Format

Share Document