scholarly journals MULTI-PLAQUETTE SOLUTIONS FOR DISCRETIZED ASHTEKAR GRAVITY

1996 ◽  
Vol 11 (05) ◽  
pp. 349-356 ◽  
Author(s):  
KIYOSHI EZAWA

A discretized version of canonical quantum gravity proposed by Loll is investigated. After slightly modifying Loll’s discretized Hamiltonian constraint, we encode its action on the spin network states in terms of combinatorial topological manipulations of the lattice loops. Using this topological formulation we find new solutions to the discretized Wheeler-DeWitt equation. These solutions have their support on the connected set of plaquettes. We also show that these solutions are not normalizable with respect to the induced heat-kernel measure on SL(2, C) gauge theories.

Author(s):  
Jakub Mielczarek

The article addresses the possibility of implementing spin network states, used in the loop quantum gravity approach to Planck scale physics on an adiabatic quantum computer. The discussion focuses on applying currently available technologies and analyzes a concrete example of a D-Wave machine. It is introduced a class of simple spin network states which can be implemented on the Chimera graph architecture of the D-Wave quantum processor. However, extension beyond the currently available quantum processor topologies is required to simulate more sophisticated spin network states. This may inspire new generations of adiabatic quantum computers. A possibility of simulating loop quantum gravity is discussed, and a method of solving a graph non-changing scalar (Hamiltonian) constraint with the use of adiabatic quantum computations is proposed. The presented results establish a basis for the future simulations of Planck scale physics, specifically quantum cosmological configurations, on quantum annealers.


2015 ◽  
Vol 30 (17) ◽  
pp. 1550085 ◽  
Author(s):  
Martin Kober

In this paper canonical quantum gravity on noncommutative space–time is considered. The corresponding generalized classical theory is formulated by using the Moyal star product, which enables the representation of the field quantities depending on noncommuting coordinates by generalized quantities depending on usual coordinates. But not only the classical theory has to be generalized in analogy to other field theories. Besides, the necessity arises to replace the commutator between the gravitational field operator and its canonical conjugated quantity by a corresponding generalized expression on noncommutative space–time. Accordingly the transition to the quantum theory has also to be performed in a generalized way and leads to extended representations of the quantum theoretical operators. If the generalized representations of the operators are inserted to the generalized constraints, one obtains the corresponding generalized quantum constraints including the Hamiltonian constraint as dynamical constraint. After considering quantum geometrodynamics under incorporation of a coupling to matter fields, the theory is transferred to the Ashtekar formalism. The holonomy representation of the gravitational field as it is used in loop quantum gravity opens the possibility to calculate the corresponding generalized area operator.


2004 ◽  
Vol 19 (10) ◽  
pp. 1609-1638 ◽  
Author(s):  
ADRIAN P. GENTLE ◽  
NATHAN D. GEORGE ◽  
ARKADY KHEYFETS ◽  
WARNER A. MILLER

We compare different treatments of the constraints in canonical quantum gravity. The standard approach on the superspace of 3-geometries treats the constraints as the sole carriers of the dynamic content of the theory, thus rendering the traditional dynamical equations obsolete. Quantization of the constraints in both the Dirac and ADM square root Hamiltonian approaches leads to the well known problems of time evolution. These problems of time are of both an interpretational and technical nature. In contrast, the geometrodynamic quantization procedure on the superspace of the true dynamical variables separates the issues of quantization from the enforcement of the constraints. The resulting theory takes into account states that are off-shell with respect to the constraints, and thus avoids the problems of time. We develop, for the first time, the geometrodynamic quantization formalism in a general setting and show that it retains all essential features previously illustrated in the context of homogeneous cosmologies.


2004 ◽  
Vol 13 (01) ◽  
pp. 165-186 ◽  
Author(s):  
SIMONE MERCURI ◽  
GIOVANNI MONTANI

We present a new reformulation of the canonical quantum geometrodynamics, which allows one to overcome the fundamental problem of the frozen formalism and, therefore, to construct an appropriate Hilbert space associate to the solution of the restated dynamics. More precisely, to remove the ambiguity contained in the Wheeler–DeWitt approach, with respect to the possibility of a (3+1)-splitting when space–time is in a quantum regime, we fix the reference frame (i.e. the lapse function and the shift vector) by introducing the so-called kinematical action. As a consequence the new super-Hamiltonian constraint becomes a parabolic one and we arrive to a Schrödinger-like approach for the quantum dynamics. In the semiclassical limit our theory provides General Relativity in the presence of an additional energy–momentum density contribution coming from non-zero eigenvalues of the Hamiltonian constraints. The interpretation of these new contributions comes out in natural way that soon as it is recognized that the kinematical action can be recasted in such a way that it describes a pressureless, but, in general, non-geodesic perfect fluid.


2010 ◽  
Vol 19 (14) ◽  
pp. 2305-2310 ◽  
Author(s):  
AXEL KLEINSCHMIDT ◽  
HERMANN NICOLAI

The arithmetic chaos of classical (super)gravity near a spacelike singularity is elevated to the quantum level via the construction of a cosmological quantum billiard system. Its precise formulation, together with its underlying algebraic structure, allows for a general analysis of the wavefunction of the universe near the singularity. We argue that the extension of these results beyond the billiard approximation may provide a concrete mechanism for emergent space as well as new perspectives on several long-standing issues in canonical quantum gravity. The exponentially growing complexity of the underlying symmetry structure could introduce an element of non-computability that effectively "screens" the cosmological singularity from a complete resolution.


Sign in / Sign up

Export Citation Format

Share Document