external gravitational field
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 2)

H-INDEX

13
(FIVE YEARS 0)

2020 ◽  
Vol 102 (7) ◽  
Author(s):  
H. Alharazin ◽  
D. Djukanovic ◽  
J. Gegelia ◽  
M. V. Polyakov

2019 ◽  
pp. 14-16

INFLUENCIA DEL CAMPO GRAVITATORIO EXTERNO DEL UNIVERSO DE GÖDEL SOBRE EL ESPECTRO ENERGÉTICO DE PARTÍCULAS ESCALARES Aníbal Páuyac Huamán DOI: https://doi.org/10.33017/RevECIPeru2004.0005/ RESUMEN En el campo gravitatorio externo del universo de Gödel con simetría cilíndrica se hallan soluciones exactas de la ecuación del campo escalar y el espectro energético de las partículas escalares correspondientes. Se analizan dos casos. En el primero, las partículas se encuentran bajo la acción solamente del campo gravitatorio externo. En el otro, las partículas interactúan con un campo electromagnético externo, el cual a su vez está dentro del campo gravitatorio externo del universo de Gödel. La solución de la ecuación del campo escalar se expresa mediante los polinomios de Jacobi. El espectro energético de las partículas escalares resulta discreto debido a la rotación del universo. Palabras clave: gravitación, universo de Gödel, espectro energético, campo escalar, campo electromagnético. ABSTRACT In the external gravitational field of the Gödel universe with cylindrical symmetry, exact solutions of the scalar field equation and energy spectrum of the corresponding scalar particles are obtained. First, we considered the scalar particles only in an external gravitational field of the Gödel universe. Then, we considered the particles interacting with an external electromagnetic field, which is at the same time in the external gravitational field of the Gödel universe. The solution of the scalar field equation is obtained in the form of Jacobi polynomials. The energy spectrum of scalar particles proves to be discrete, due to rotation of the universe. Keywords: gravitation, Gödel universe, energy spectrum, scalar field, electromagnetic field.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter is concerned with the laws of motion of matter—particles, fluids, or fields—in the presence of an external gravitational field. In accordance with the equivalence principle, this motion will be ‘free’. That is, it is constrained only by the geometry of the spacetime whose curvature represents the gravitation. The concepts of energy, momentum, and angular momentum follow from the invariance of the solutions of the equations of motion under spatio-temporal translations or rotations. The chapter shows how the action is transformed, no longer under a modification of the field configuration, but instead under a displacement or, in the ‘passive’ version, under a translation of the coordinate grid in the opposite direction.


2018 ◽  
Vol 300-302 ◽  
pp. 203-209
Author(s):  
P.G. Mitkin ◽  
G. Prokhorov ◽  
O.V. Teryaev ◽  
V.I. Zakharov

2017 ◽  
Vol 96 (8) ◽  
Author(s):  
Sourav Bhattacharya ◽  
Sumanta Chakraborty ◽  
T. Padmanabhan

2017 ◽  
Vol 57 (2) ◽  
Author(s):  
Stanislav Komarov ◽  
Alexander Gorbatsievich ◽  
Alexander Tarasenko

A compact binary star that moves in a strong external gravitational field of a Schwarzschild black hole is considered. Decomposition of the redshift into a series with respect to the size of the binary system is obtained. This expression is used to calculate the redshift for a model binary system. Possible application of the results is discussed.


2017 ◽  
Vol 96 (2) ◽  
Author(s):  
Jutta Kunz ◽  
Petya Nedkova ◽  
Stoytcho Yazadjiev

2016 ◽  
Vol 13 (02) ◽  
pp. 1650020 ◽  
Author(s):  
Vladimir Lasukov

Quantum solution of differential equations of classical mechanics is found. This solution describes test particle motion in an external gravitational field with the variable passive mass. Theoretical prediction of quintesphere existence in the universe is made.


2015 ◽  
Vol 30 (11) ◽  
pp. 1550052 ◽  
Author(s):  
Antonio Accioly ◽  
José Helayël-Neto ◽  
F. E. Barone ◽  
Breno Giacchini ◽  
Wallace Herdy

The scattering of a photon by a weak external gravitational field which is solution of the linearized higher-derivative gravity equations sourced by a point-like massive particle located at the origin of the coordinate system, is analyzed. It is shown that the [Formula: see text]-sector of the theory produces dispersive photon propagation. Subsequently, the angle |Δθ|(≡|θ violet -θ red |) at which the visible spectrum would be spread over in the case of a photon passing by the Sun is plotted as a function of the |β|-constant related to the [Formula: see text]-sector. An upper bound on |β| is then found. Interestingly enough, this limit is thirteen orders of magnitude below the accepted upper bound on |β|.


Sign in / Sign up

Export Citation Format

Share Document