scholarly journals INTERACTION HIERARCHY: STRING AND QUANTUM GRAVITY

1996 ◽  
Vol 11 (17) ◽  
pp. 1379-1396 ◽  
Author(s):  
G.K. SAVVIDY ◽  
K.G. SAVVIDY

We have found that the functional integral for quantum gravity can be represented as a superposition of less complicated theory of random surfaces with Euler character as an action. We propose an alternative linear action A(M4) for quantum gravity. On the lattice we constructed spin system with local interaction, which has the equivalent partition function. The scaling limit is discussed.

1993 ◽  
Vol 08 (06) ◽  
pp. 1139-1152
Author(s):  
M.A. MARTÍN-DELGADO

The discrete model of the real symmetric one-matrix ensemble is analyzed with a cubic interaction. The partition function is found to satisfy a recursion relation that solves the model. The double scaling-limit of the recursion relation leads to a Miura transformation relating the contributions to the free energy coming from oriented and unoriented random surfaces. This transformation is the same kind as found with a quartic interaction.


1991 ◽  
Vol 06 (15) ◽  
pp. 2743-2754 ◽  
Author(s):  
NORISUKE SAKAI ◽  
YOSHIAKI TANII

The radius dependence of partition functions is explicitly evaluated in the continuum field theory of a compactified boson, interacting with two-dimensional quantum gravity (noncritical string) on Riemann surfaces for the first few genera. The partition function for the torus is found to be a sum of terms proportional to R and 1/R. This is in agreement with the result of a discretized version (matrix models), but is quite different from the critical string. The supersymmetric case is also explicitly evaluated.


2021 ◽  
Vol 185 (2) ◽  
Author(s):  
Shuai Shao ◽  
Yuxin Sun

AbstractWe study the connection between the correlation decay property (more precisely, strong spatial mixing) and the zero-freeness of the partition function of 2-spin systems on graphs of bounded degree. We show that for 2-spin systems on an entire family of graphs of a given bounded degree, the contraction property that ensures correlation decay exists for certain real parameters implies the zero-freeness of the partition function and the existence of correlation decay for some corresponding complex neighborhoods. Based on this connection, we are able to extend any real parameter of which the 2-spin system on graphs of bounded degree exhibits correlation decay to its complex neighborhood where the partition function is zero-free and correlation decay still exists. We give new zero-free regions in which the edge interaction parameters and the uniform external field are all complex-valued, and we show the existence of correlation decay for such complex regions. As a consequence, we obtain approximation algorithms for computing the partition function of 2-spin systems on graphs of bounded degree for these complex parameter settings.


1993 ◽  
Vol 08 (13) ◽  
pp. 1205-1214 ◽  
Author(s):  
K. BECKER ◽  
M. BECKER

We present the solution of the discrete super-Virasoro constraints to all orders of the genus expansion. Integrating over the fermionic variables we get a representation of the partition function in terms of the one-matrix model. We also obtain the non-perturbative solution of the super-Virasoro constraints in the double scaling limit but do not find agreement between our flows and the known supersymmetric extensions of KdV.


1989 ◽  
Vol 233 (1-2) ◽  
pp. 79-84 ◽  
Author(s):  
M.A. Awada ◽  
A.H. Chamseddine

1992 ◽  
Vol 07 (21) ◽  
pp. 5337-5367 ◽  
Author(s):  
L. ALVAREZ-GAUMÉ ◽  
H. ITOYAMA ◽  
J.L. MAÑES ◽  
A. ZADRA

We propose a discrete model whose continuum limit reproduces the string susceptibility and the scaling dimensions of (2, 4m) minimal superconformal models coupled to 2D supergravity. The basic assumption in our presentation is a set of super-Virasoro constraints imposed on the partition function. We recover the Neveu-Schwarz and Ramond sectors of the theory, and we are also able to evaluate all planar loop correlation functions in the continuum limit. We find evidence to identify the integrable hierarchy of nonlinear equations describing the double scaling limit as a supersymmetric generalization of KP studied by Rabin.


2015 ◽  
Vol 29 (32) ◽  
pp. 1550203 ◽  
Author(s):  
George Savvidy

In this paper we review a recently suggested generalization of the Feynman path integral to an integral over random surfaces. The proposed action is proportional to the linear size of the random surfaces and is called gonihedric. The convergence and the properties of the partition function are analyzed. The model can also be formulated as a spin system with identical partition functions. The spin system represents a generalization of the Ising model with ferromagnetic, antiferromagnetic and quartic interactions. Higher symmetry of the model allows to construct dual spin systems in three and four dimensions. In three dimensions the transfer matrix describes the propagation of closed loops and we found its exact spectrum. It is a unique exact solution of the three-dimensional statistical spin system. In three and four dimensions, the system exhibits the second-order phase transitions. The gonihedric spin systems have exponentially degenerated vacuum states separated by the potential barriers and can be used as a storage of binary information.


2013 ◽  
Vol 22 (02) ◽  
pp. 1350001 ◽  
Author(s):  
ELENA MAGLIARO ◽  
CLAUDIO PERINI

We consider spinfoam quantum gravity in the flipped limit, which is the double scaling limit γ → 0, j → ∞ with γj = const. , where γ is the Immirzi parameter, j is the spin and γj gives the physical area in Planck units. In this regime the amplitude for a 2-complex becomes effectively an integral over Regge-like metrics and seems to enforce Einstein equations in the semiclassical regime. The Immirzi parameter must be considered as dynamical in the sense that it runs to zero when the fine structure of the foam is averaged. In addition to quantum corrections which vanish for ℏ → 0, we find new corrections due to the discreteness of geometric spectra.


Sign in / Sign up

Export Citation Format

Share Document