q-Area Preserving Algebras SDiff(Tk) and the Matrix Algebra $\bar a_{\infty}$

1997 ◽  
Vol 12 (12) ◽  
pp. 821-825 ◽  
Author(s):  
E. H. El Kinani ◽  
M. Zakkari

We consider the infinite matrix Lie algebra [Formula: see text] and an infinite set of its subalgebras parametrized by an Nth root of the unity; qN=1. We obtain the embedding in [Formula: see text] of the area preserving diffeomorphism on the 2-D torus and also its one-parameter deformed version. The correspondence between the area preserving diffeomorphism on the torus Tk, k>2 and the algebra [Formula: see text] is pointed out.

2000 ◽  
Vol 653 ◽  
Author(s):  
Samuel Forest

AbstractThe mechanics of generalized continua provides an efficient way of introducing intrinsic length scales into continuum models of materials. A Cosserat framework is presented here to descrine the mechanical behavior of crystalline solids. The first application deals with the problem of the stress field at a crak tip in Cosserat single crystals. It is shown that the strain localization patterns developping at the crack tip differ from the classical picture : the Cosserat continuum acts as a bifurcation mode selector, whereby kink bands arising in the classical framework disappear in generalized single crystal plasticity. The problem of a Cosserat elastic inclusion embedded in an infinite matrix is then considered to show that the stress state inside the inclusion depends on its absolute size lc. Two saturation regimes are observed : when the size R of the inclusion is much larger than a characteristic size of the medium, the classical Eshelby solution is recovered. When R is much small than the inclusion, a much higher stress is reached (for an inclusion stiffer than the matrix) that does not depend on the size any more. There is a transition regime for which the stress state is not homogeneous inside the inclusion. Similar regimes are obtained in the study of grain size effects in polycrystalline aggregates of Cosserat grains.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
J.-C. Cortés ◽  
L. Jódar ◽  
Francisco J. Solís ◽  
Roberto Ku-Carrillo

We introduce infinite matrix products including some of their main properties and convergence results. We apply them in order to extend to the matrix scenario the definition of the scalar gamma function given by an infinite product due to Weierstrass. A limit representation of the matrix gamma function is also provided.


1962 ◽  
Vol 14 ◽  
pp. 553-564 ◽  
Author(s):  
Richard Block

If L is a Lie algebra with a representation Δ a→aΔ (a in L) (of finite degree), then by the trace form f = fΔ of Δ is meant the symmetric bilinear form on L obtained by taking the trace of the matrix products:Then f is invariant, that is, f is symmetric and f(ab, c) — f(a, bc) for all a, b, c in L. By the Δ-radical L⊥ = L⊥ of L is meant the set of a in L such that f(a, b) = 0 for all b in L. Then L⊥ is an ideal and f induces a bilinear form , called a quotient trace form, on L/L⊥. Thus an algebra has a quotient trace form if and only if there exists a Lie algebra L with a representation Δ such that


2003 ◽  
Vol 19 (1) ◽  
pp. 1-8
Author(s):  
T. Chen ◽  
C. H. Hsieh ◽  
P. C. Chuang

ABSTRACTA series solution is presented for a spherical inclusion embedded in an infinite matrix under a remotely applied uniform intensity. Particularly, the interface between the inclusion and the matrix is considered to be inhomegeneously bonded. We examine the axisymmetric case in which the interface parameter varies with the cone angle θ. Two kinds of imperfect interfaces are considered: an imperfect interface which models a thin interphase of low conductivity and an imperfect interface which models a thin interphase of high conductivity. We show that, by expanding the solutions of terms of Legendre polynomials, the field solution is governed by a linear set of algebraic equations with an infinite number of unknowns. The key step of the formulation relies on algebraic identities between coefficients of products of Legendre series. Some numerical illustrations are presented to show the correctness of the presented procedures. Further, solutions of the boundary-value problem are employed to estimate the effective conductivity tensor of a composite consisting of dispersions of spherical inclusions with equal size. The effective conductivity solely depends on one particular constant among an infinite number of unknowns.


2021 ◽  
Vol 71 (6) ◽  
pp. 1375-1400
Author(s):  
Feyzi Başar ◽  
Hadi Roopaei

Abstract Let F denote the factorable matrix and X ∈ {ℓp , c 0, c, ℓ ∞}. In this study, we introduce the domains X(F) of the factorable matrix in the spaces X. Also, we give the bases and determine the alpha-, beta- and gamma-duals of the spaces X(F). We obtain the necessary and sufficient conditions on an infinite matrix belonging to the classes (ℓ p (F), ℓ ∞), (ℓ p (F), f) and (X, Y(F)) of matrix transformations, where Y denotes any given sequence space. Furthermore, we give the necessary and sufficient conditions for factorizing an operator based on the matrix F and derive two factorizations for the Cesàro and Hilbert matrices based on the Gamma matrix. Additionally, we investigate the norm of operators on the domain of the matrix F. Finally, we find the norm of Hilbert operators on some sequence spaces and deal with the lower bound of operators on the domain of the factorable matrix.


1966 ◽  
Vol 10 (01) ◽  
pp. 25-48
Author(s):  
Richard P. Bernicker

A linearized two-dimensional theory is presented for high-speed hydrofoils near the free surface. The "direct" problem (hydrofoil shape specified) is attacked by replacing the actual foil with vortex and source sheets. The resulting integral equation for the strength of the singularity distribution is recast into an infinite set of linear algebraic equations relating the unknown constants in a Glauert-type vorticity expansion to the boundary condition on the foil. The solution is achieved using a matrix inversion technique and it is found that the matrix relating the known and unknown constants is a function of depth of submergence alone. Inversion of this matrix at each depth allows the vorticity constants to be calculated for any arbitrary foil section by matrix multiplication. The inverted matrices have been calculated for several depth-to-chord ratios and are presented herein. Several examples for specific camber and thickness distributions are given, and results indicate significant effects in the force characteristics at depths less than one chord. In particular, thickness effects cause a loss of lift at shallow submergences which may be an appreciable percentage of the total design lift. The second part treats the "indirect" problem of designing a hydrofoil sectional shape at a given depth to achieve a specified pressure loading. Similar to the "direct" problem treated in the first part, integral equations are derived for the camber and thickness functions by replacing the actual foil by vortex and source sheets. The solution is obtained by recasting these equations into an infinite set of linear algebraic equations relating the constants in a series expansion of the foil geometry to the known pressure boundary conditions. The matrix relating the known and unknown constants is, again, a function of the depth of submergence alone, and inversion techniques allow the sectional shape to be determined for arbitrary design pressure distributions. Several examples indicate the procedure and results are presented for the change in sectional shape for a given pressure loading as the depth of submergence of the foil is decreased.


2021 ◽  
Vol 65 (7) ◽  
pp. 1-7
Author(s):  
Aymen Ammar ◽  
Aref Jeribi ◽  
Kamel Mahfoudhi

Sign in / Sign up

Export Citation Format

Share Document