The gravitational field of spherically symmetric matter distributions in the Yang-Mills gauge theory of gravity

1977 ◽  
Vol 63 (2) ◽  
pp. 69-72 ◽  
Author(s):  
M. Camenzind
2007 ◽  
Vol 04 (08) ◽  
pp. 1239-1257 ◽  
Author(s):  
CARLOS CASTRO

A novel Chern–Simons E8 gauge theory of gravity in D = 15 based on an octicE8 invariant expression in D = 16 (recently constructed by Cederwall and Palmkvist) is developed. A grand unification model of gravity with the other forces is very plausible within the framework of a supersymmetric extension (to incorporate spacetime fermions) of this Chern–Simons E8 gauge theory. We review the construction showing why the ordinary 11D Chern–Simons gravity theory (based on the Anti de Sitter group) can be embedded into a Clifford-algebra valued gauge theory and that an E8 Yang–Mills field theory is a small sector of a Clifford (16) algebra gauge theory. An E8 gauge bundle formulation was instrumental in understanding the topological part of the 11-dim M-theory partition function. The nature of this 11-dim E8 gauge theory remains unknown. We hope that the Chern–Simons E8 gauge theory of gravity in D = 15 advanced in this work may shed some light into solving this problem after a dimensional reduction.


2009 ◽  
Vol 06 (06) ◽  
pp. 911-930 ◽  
Author(s):  
CARLOS CASTRO

A candidate action for an Exceptional E8 gauge theory of gravity in 8D is constructed. It is obtained by recasting the E8 group as the semi-direct product of GL(8,R) with a deformed Weyl–Heisenberg group associated with canonical-conjugate pairs of vectorial and antisymmetric tensorial generators of rank two and three. Other actions are proposed, like the quarticE8 group-invariant action in 8D associated with the Chern–Simons E8 gauge theory defined on the 7-dim boundary of a 8D bulk. To finalize, it is shown how the E8 gauge theory of gravity can be embedded into a more general extended gravitational theory in Clifford spaces associated with the Cl(16) algebra and providing a solid geometrical program of a grand unification of gravity with Yang–Mills theories. The key question remains if this novel gravitational model based on gauging the E8 group may still be renormalizable without spoiling unitarity at the quantum level.


1988 ◽  
Vol 03 (10) ◽  
pp. 2303-2313
Author(s):  
C. ABECASIS ◽  
A. FOUSSATS ◽  
O. ZANDRON

For the Poincare group manifold we prove that there are solutions for the pseudo-connection one-forms (Yang-Mills potentials) which are not diffeomorphically equivalent to those initially proposed by Ne’eman and Regge in their gauge theory of gravity and supergravity on a (super) group manifold. This is done by imposing the factorization conditions to the geometrical formulation of supersymmetric gauge theory.


1997 ◽  
Vol 06 (03) ◽  
pp. 263-303 ◽  
Author(s):  
Frank Gronwald

We give a self-contained introduction into the metric–affine gauge theory of gravity. Starting from the equivalence of reference frames, the prototype of a gauge theory is presented and illustrated by the example of Yang–Mills theory. Along the same lines we perform a gauging of the affine group and establish the geometry of metric–affine gravity. The results are put into the dynamical framework of a classical field theory. We derive subcases of metric-affine gravity by restricting the affine group to some of its subgroups. The important subcase of general relativity as a gauge theory of tranlations is explained in detail.


1999 ◽  
Vol 14 (02) ◽  
pp. 93-97 ◽  
Author(s):  
L. C. GARCIA DE ANDRADE

The theory considered here is not Einstein general relativity, but is a Poincaré type gauge theory of gravity, therefore the Birkhoff theorem is not applied and the external solution is not vacuum spherically symmetric and tachyons may exist outside the core defect.


2012 ◽  
Vol 07 ◽  
pp. 158-164 ◽  
Author(s):  
JAMES M. NESTER ◽  
CHIH-HUNG WANG

Many alternative gravity theories use an independent connection which leads to torsion in addition to curvature. Some have argued that there is no physical need to use such connections, that one can always use the Levi-Civita connection and just treat torsion as another tensor field. We explore this issue here in the context of the Poincaré Gauge theory of gravity, which is usually formulated in terms of an affine connection for a Riemann-Cartan geometry (torsion and curvature). We compare the equations obtained by taking as the independent dynamical variables: (i) the orthonormal coframe and the connection and (ii) the orthonormal coframe and the torsion (contortion), and we also consider the coupling to a source. From this analysis we conclude that, at least for this class of theories, torsion should not be considered as just another tensor field.


2015 ◽  
Vol 751 ◽  
pp. 131-134 ◽  
Author(s):  
O. Cebecioğlu ◽  
S. Kibaroğlu

Sign in / Sign up

Export Citation Format

Share Document