scholarly journals VORTEX SOLUTION IN (2+1)-DIMENSIONAL PURE YANG–MILLS THEORY AT HIGH TEMPERATURES

1999 ◽  
Vol 14 (27) ◽  
pp. 1909-1916 ◽  
Author(s):  
DMITRI DIAKONOV

At high temperatures the A0 component of the Yang–Mills field plays the role of the Higgs field, and the one-loop potential V(A0) plays the role of the Higgs potential. We find a new stable vortex solution of the Abrikosov–Nielsen–Olesen type, and discuss its properties and possible implications.

2003 ◽  
Vol 18 (17) ◽  
pp. 3057-3088 ◽  
Author(s):  
I. L. Buchbinder ◽  
V. A. Krykhtin

We study the theory of noncommutative U (N) Yang–Mills field interacting with scalar and spinor fields in the fundamental and the adjoint representations. We include in the action both the terms describing interaction between the gauge and the matter fields and the terms which describe interaction among the matter fields only. Some of these interaction terms have not been considered previously in the context of noncommutative field theory. We find all counterterms for the theory to be finite in the one-loop approximation. It is shown that these counterterms allow to absorb all the divergencies by renormalization of the fields and the coupling constants, so the theory turns out to be multiplicatively renormalizable. In case of 1PI gauge field functions the result may easily be generalized on an arbitrary number of the matter fields. To generalize the results for the other 1PI functions it is necessary for the matter coupling constants to be adapted in the proper way. In some simple cases this generalization for a part of these 1PI functions is considered.


1993 ◽  
Vol 08 (30) ◽  
pp. 5367-5381 ◽  
Author(s):  
R. PERCACCI ◽  
E. SEZGIN

Using canonical methods, we study the invariance properties of a bosonic p-brane propagating in a curved background locally diffeomorphic to M×G, where M is space-time and G a group manifold. The action is that of a gauged sigma model in p+1 dimensions coupled to a Yang-Mills field and a (p+1) form in M. We construct the generators of Yang-Mills and tensor gauge transformations and exhibit the role of the (p+1) form in canceling the potential Schwinger terms. We also discuss the Noether currents associated with the global symmetries of the action and the question of the existence of infinite-dimensional symmetry algebras, analogous to the Kac-Moody symmetry of the string.


2005 ◽  
Vol 20 (24) ◽  
pp. 1797-1811 ◽  
Author(s):  
AXEL MAAS

The infrared behavior of Yang–Mills theory at finite temperature provides access to the role of confinement. In this review recent results on this topic from lattice calculations and especially Dyson–Schwinger studies are discussed. These indicate persistence of a residual confinement even in the high-temperature phase. The confinement mechanism is very similar to the one in the vacuum for the chromomagnetic sector. In the chromoelectric sector screening occurs at the soft scale g2T, although not leading to a perturbative behavior.


Author(s):  
Iosif L. Buchbinder ◽  
Ilya L. Shapiro

This chapter focuses on one-loop calculations and related issues such as practical renormalization and the derivation of beta functions. The general result for the one-loop divergences from chapter 13 is applied to a sequence of practical calculations. The starting point is the derivation of vacuum divergences of free matter fields. The beta functions in the vacuum sector are calculated. Asymptotic freedom is discussed. In addition, examples of one-loop divergences in interacting theories are elaborated, including the Yang-Mills field coupled to fermions and scalars, and the Yukawa model.


2013 ◽  
Vol 28 (30) ◽  
pp. 1350144 ◽  
Author(s):  
ROSY TEH ◽  
BAN-LOONG NG ◽  
KHAI-MING WONG

We performed the Cho decomposition of the SU(2) Yang–Mills–Higgs gauge potentials of the finite energy (1) one-half monopole solution and (2) the one and a half monopoles solution into Abelian and non-Abelian components. We found that the semi-infinite string singularity in the gauge potentials is a contribution from the Higgs field of the one-half monopole in both of the solutions. The non-Abelian components of the gauge potentials are able to remove the point singularity of the Abelian components of the 't Hooft–Polyakov monopole but not the string singularity of the one-half monopole which is topological in nature. Hence the total energy of a one monopole is infinite in the Maxwell electromagnetic theory but the total energy of a one-half monopole is finite. By analyzing the magnetic fields and the gauge covariant derivatives of the Higgs field, we are able to conclude that both the one-half integer monopoles solutions are indeed non-BPS even in the limit of vanishing Higgs self-coupling constant.


1998 ◽  
Vol 13 (06) ◽  
pp. 985-1012 ◽  
Author(s):  
LAURENT BAULIEU ◽  
MARTIN SCHADEN

We reinterpret the Faddeev–Popov gauge-fixing procedure of Yang–Mills theories as the definition of a topological quantum field theory for gauge group elements depending on a background connection. This has the advantage of relating topological gauge-fixing ambiguities to the global breaking of a supersymmetry. The global zero modes of the Faddeev–Popov ghosts are handled in the context of an equivariant cohomology without breaking translational invariance. The gauge-fixing involves constant fields which play the role of moduli and modify the behavior of Green functions at subasymptotic scales. At the one loop level physical implications from these power corrections are gauge invariant.


1971 ◽  
Vol 69 (3) ◽  
pp. 423-442 ◽  
Author(s):  
Eric A. Lord

AbstractThe free field equations for particles with spin are invariant under a group SL(2, c) whose transformations correspond to changes of representation of the twocomponent spinor algebra. The generalization of the equations which extends this invariance to a guage invariance in the Yang–Mills sense necessitates the introduction of auxiliary fields (which are also necessary to maintain Lorentz covariance). These fields can be interpreted as the potentials of a spin-2 field, just as the auxiliary fields for the charge gauge group are the potentials of a spin-l field (electromagnetism); this spin-2 field is then self-interacting. The Bargmann–Wigner formulation of the linear spin-2 field, when modified by the proposed self-interaction, yields a non-linear theory of a spin-2 field which is shown to be identical with Einstein's gravitational theory. With this interpretation the auxiliary fields take on an extra role of Yang–Mills field for the general coordinate transformation group – that is, they are the components of the affine connexion.


1995 ◽  
Vol 10 (13n14) ◽  
pp. 1065-1072 ◽  
Author(s):  
SAMUEL W. MACDOWELL ◽  
OLA TÖRNKVIST

Vortex configurations in the electroweak gauge theory are investigated. Two gauge-inequivalent solutions of the field equations, the Z and W vortices, have previously been found. They correspond to embeddings of the Abelian Nielsen-Olesen vortex solution into a U(1) subgroup of SU(2)×U(1). It is shown here that any electroweak vortex solution can be mapped into a solution of the same energy with a vanishing upper component of the Higgs field. The correspondence is a gauge equivalence for all vortex solutions except those for which the winding numbers of the upper and lower Higgs components add to zero. This class of solutions, which includes the W vortex, corresponds to a singular solution in the one-component gauge. The results, combined with numerical investigations, provide an argument against the existence of other vortex solutions in the gauge-Higgs sector of the Standard Model.


2014 ◽  
Vol 343 ◽  
pp. 1-15 ◽  
Author(s):  
Rosy Teh ◽  
Ban-Loong Ng ◽  
Khai-Ming Wong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document