GRAVITATIONAL THERMODYNAMICS AND BLACK-HOLE MERGERS

2000 ◽  
Vol 15 (30) ◽  
pp. 4871-4875 ◽  
Author(s):  
SIMON F. PORTEGIES ZWART ◽  
STEPHEN L. W. MCMILLAN

Black holes become the most massive objects early in the evolution of star clusters. Dynamical relaxation then causes them to sink to the cluster core, where they form binaries which become more tightly bound by superelastic encounters with other cluster members. Ultimately, these binaries are ejected from the cluster. The majority of escaping black-hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational waves causes them to coalesce within a few billion years. The rate at which such collisions occur is on the order of 10-7 per year per cubic megaparsec. This implies event rates for gravitational-wave detectors substantially greater than current estimates of the corresponding rates from neutron-star mergers or black-hole mergers stemming from pure binary evolution.

2019 ◽  
Vol 488 (2) ◽  
pp. 2825-2835 ◽  
Author(s):  
Giacomo Fragione ◽  
Nathan W C Leigh ◽  
Rosalba Perna

ABSTRACT Nuclear star clusters that surround supermassive black holes (SMBHs) in galactic nuclei are thought to contain large numbers of black holes (BHs) and neutron stars (NSs), a fraction of which form binaries and could merge by Kozai–Lidov oscillations (KL). Triple compact objects are likely to be present, given what is known about the multiplicity of massive stars, whose life ends either as an NS or a BH. In this paper, we present a new possible scenario for merging BHs and NSs in galactic nuclei. We study the evolution of a triple black hole (BH) or neutron star (NS) system orbiting an SMBH in a galactic nucleus by means of direct high-precision N-body simulations, including post-Newtonian terms. We find that the four-body dynamical interactions can increase the KL angle window for mergers compared to the binary case and make BH and NS binaries merge on shorter time-scales. We show that the merger fraction can be up to ∼5–8 times higher for triples than for binaries. Therefore, even if the triple fraction is only ∼10–$20\rm{\,per\,cent}$ of the binary fraction, they could contribute to the merger events observed by LIGO/VIRGO in comparable numbers.


2016 ◽  
Vol 12 (S324) ◽  
pp. 41-42
Author(s):  
Norita Kawanaka ◽  
Masaki Yamaguchi ◽  
Tsvi Piran ◽  
Tomasz Bulik

AbstractWe study the prospect for Gaia to detect black hole binary systems without the mass transfer from their companion stars. Gaia will be able to discover Galactic black holes without mass accretion by detecting the proper motion of their companion stars. We evaluate the number of such black hole binaries which have the orbital period short enough to be detected by Gaia during its operation, taking into account the binary evolution model.


2017 ◽  
Vol 32 (39) ◽  
pp. 1730035 ◽  
Author(s):  
Keith Riles

Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst (GRB) and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein “clouds” surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches are discussed.


2020 ◽  
Vol 498 (3) ◽  
pp. 4287-4294
Author(s):  
Jongsuk Hong ◽  
Abbas Askar ◽  
Mirek Giersz ◽  
Arkadiusz Hypki ◽  
Suk-Jin Yoon

ABSTRACT The dynamical formation of black hole binaries in globular clusters that merge due to gravitational waves occurs more frequently in higher stellar density. Meanwhile, the probability to form intermediate mass black holes (IMBHs) also increases with the density. To explore the impact of the formation and growth of IMBHs on the population of stellar mass black hole binaries from globular clusters, we analyse the existing large survey of Monte Carlo globular cluster simulation data (mocca-survey Database I). We show that the number of binary black hole mergers agrees with the prediction based on clusters’ initial properties when the IMBH mass is not massive enough or the IMBH seed forms at a later time. However, binary black hole formation and subsequent merger events are significantly reduced compared to the prediction when the present-day IMBH mass is more massive than ${\sim}10^4\, \rm M_{\odot }$ or the present-day IMBH mass exceeds about 1 per cent of cluster’s initial total mass. By examining the maximum black hole mass in the system at the moment of black hole binary escaping, we find that ∼90 per cent of the merging binary black holes escape before the formation and growth of the IMBH. Furthermore, large fraction of stellar mass black holes are merged into the IMBH or escape as single black holes from globular clusters in cases of massive IMBHs, which can lead to the significant underpopulation of binary black holes merging with gravitational waves by a factor of 2 depending on the clusters’ initial distributions.


2007 ◽  
Vol 3 (S246) ◽  
pp. 346-350
Author(s):  
R. Spurzem ◽  
P. Berczik ◽  
I. Berentzen ◽  
D. Merritt ◽  
M. Preto ◽  
...  

AbstractWe study the formation, growth, and co-evolution of single and multiple supermassive black holes (SMBHs) and compact objects like neutron stars, white dwarfs, and stellar mass black holes in galactic nuclei and star clusters, focusing on the role of stellar dynamics. In this paper we focus on one exemplary topic out of a wider range of work done, the study of orbital parameters of binary black holes in galactic nuclei (binding energy, eccentricity, relativistic coalescence) as a function of initial parameters. In some cases the classical evolution of black hole binaries in dense stellar systems drives them to surprisingly high eccentricities, which is very exciting for the emission of gravitational waves and relativistic orbit shrinkage. Such results are interesting to the emerging field of gravitational wave astronomy, in relation to a number of ground and space based instruments designed to measure gravitational waves from astrophysical sources (VIRGO, Geo600, LIGO, LISA). Our models self-consistently cover the entire range from Newtonian dynamics to the relativistic coalescence of SMBH binaries.


2021 ◽  
Vol 103 (8) ◽  
Author(s):  
Yiwen Huang ◽  
Carl-Johan Haster ◽  
Salvatore Vitale ◽  
Vijay Varma ◽  
Francois Foucart ◽  
...  

1996 ◽  
Vol 165 ◽  
pp. 93-103
Author(s):  
Roger W. Romani

The presence of accreting black holes (BH) among the X-ray binaries has been recognized for many years. Traditionally, Cyg X-1 and the handful of other candidates have been thought of as cousins of the HMXB neutron star systems. Recent studies of the soft X-ray transients such as A 0620-00 have, however, shown that the dynamical evidence makes these low-mass systems very strong black-hole candidates. Further, analysis of the eventual end-states of various high-mass X-ray binaries suggest that some could end as observable BH-pulsar binaries, although the first such system is yet to be discovered.


2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740015 ◽  
Author(s):  
Chang-Hwan Lee

With H. A. Bethe, G. E. Brown worked on the merger rate of neutron star binaries for the gravitational wave detection. Their prediction has to be modified significantly due to the observations of [Formula: see text] neutron stars and the detection of gravitational waves. There still, however, remains a possibility that neutron star-low mass black hole binaries are significant sources of gravitational waves for the ground-based detectors. In this paper, I review the evolution of neutron star binaries with super-Eddington accretion and discuss the future prospect.


Sign in / Sign up

Export Citation Format

Share Document