DEPOLARIZATION AND LUMINOSITY ISSUES IN A HIGH ENERGY LINEAR COLLIDER

2000 ◽  
Vol 15 (16) ◽  
pp. 2555-2564
Author(s):  
S. CHESHKOV ◽  
T. TAJIMA

In the next energy frontier of an electron–positron (electron–electron) linear collider its demand of both extreme high energy and high luminosity leads to a high production of W+W- (W- particles). In order to delineate processes of interest, it is advantageous to polarize the electron and positron beams, as this tends to suppress the above known processes and thus heightens the sensitivity to the sought-after processes. We investigate the possible depolarization of the electron (positron) beams in the acceleration stages as well as in the collision point. We take the example of the laser wakefield accelerator design at 5 TeV center of mass energy of colliding beams. We find that in this design the spin depolarization due to the stage jitter noise is certainly negligible, and the depolarization due to the self-generated fields at the collision point is still tolerable. We also consider several lower energy scenarios as they might be possible to achieve in a single beam driven acceleration stage.

2001 ◽  
Vol 16 (supp01c) ◽  
pp. 1193-1196
Author(s):  
T. O. Raubenheimer

An electron/positron linear collider with a center-of-mass energy between 0.5 and 1 TeV would be an important complement to the physics program of the LHC in the next decade. The Next Linear Collider (NLC) is being designed by a US collaboration (FNAL, LBNL, LLNL, and SLAC) which is working closely with the Japanese collaboration that is designing the Japanese Linear Collider (JLC). This paper will discuss the technical difficulties encountered as well as the changes that have been made to the NLC design over the last year. These changes include improvements to the X-band rf system as well as modifications to the beam delivery system. The net effect has been to reduce the length of the collider from about 32 km to 25 km and to reduce the number of klystrons and modulators by a factor of two. Together these lead to significant cost savings.


Author(s):  
Rolf-Dieter Heuer

This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron–positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron–proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Ali Can Canbay ◽  
Umit Kaya ◽  
Bora Ketenoglu ◽  
Bilgehan Baris Oner ◽  
Saleh Sultansoy

Main parameters of Super proton-proton Collider (SppC) based lepton-proton colliders are estimated. For electron beam parameters, highest energy International Linear Collider (ILC) and Plasma Wake Field Accelerator-Linear Collider (PWFA-LC) options are taken into account. For muon beams, 1.5 TeV and 3 TeV center of mass energy muon collider parameters are used. In addition, ultimate μp collider which assumes construction of additional 50 TeV muon ring in the SppC tunnel is considered. It is shown that luminosity values exceeding 1032 cm-2 s-1 can be achieved with moderate upgrade of the SppC proton beam parameters. Physics search potential of proposed lepton-proton colliders is illustrated by considering small Björken x region as an example of SM physics and resonant production of color octet leptons as an example of BSM physics.


2019 ◽  
Vol 34 (34) ◽  
pp. 1943003 ◽  
Author(s):  
Kazuhisa Nakajima ◽  
Jonathan Wheeler ◽  
Gérard Mourou ◽  
Toshiki Tajima

TeV center-of-mass energy electron-positron linear colliders comprising seamlessly staged capillary laser-plasma accelerators are presented. A moderate intensity laser pulse coupled with the single electromagnetic hybrid mode in a gas-filled capillary can generate plasma waves in the linear regime, where laser wakefields can accelerate equally focused electron and positron beams. In multiple stage capillary accelerators, a particle beam with respect to the laser wakefield can undergo consecutive acceleration up to TeV energies, associated with continuous transverse focusing in a beam size down to a nanometer level, being capable of a promising electron-positron linear collider with very high luminosities of the order of 10[Formula: see text] cm[Formula: see text]s[Formula: see text]. The transverse and longitudinal beam dynamics of beam particles in plasma wakefields with the effects of radiation reaction and multiple Coulomb scattering are investigated numerically to estimate the luminosities in beam-beam collisions with the effects of beamstrahlung radiation and bunch disruption.


2017 ◽  
Vol 32 (34) ◽  
pp. 1746009
Author(s):  
Tianjian Bian ◽  
Jie Gao ◽  
Chuang Zhang ◽  
Xiao-Hao Cui ◽  
Yi-Wei Wang ◽  
...  

In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. In this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ring as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. For the normal bend scheme, we implement the orbit correction to correct the earth field.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
M. Köksal ◽  
V. Arı ◽  
A. Senol

The self-couplings of the electroweak gauge bosons are completely specified by the non-Abelian gauge nature of the Standard Model (SM). The direct study of these couplings provides a significant opportunity to test the validity of the SM and the existence of new physics beyond the SM up to the high energy scale. For this reason, we investigate the potential of the processes γγ→ZZ, e-γ→e-γ⁎γ→e-ZZ,  and e+e-→e+γ⁎γ⁎e-→e+ZZe- to examine the anomalous quartic couplings of ZZγγ vertex at the Compact Linear Collider (CLIC) with center-of-mass energy 3 TeV. We calculate 95% confidence level sensitivities on the dimension-8 parameters with various values of the integrated luminosity. We show that the best bounds on the anomalous fM2/Λ4, fM3/Λ4, fT0/Λ4, and fT9/Λ4 couplings arising from γγ→ZZ process among those three processes at center-of-mass energy of 3 TeV and integrated luminosity of Lint=2000 fb−1 are found to be [-3.30;3.30]×10-3 TeV−4, [-1.20;1.20]×10-2 TeV−4, [-3.40;3.40]×10-3 TeV−4, and [-1.80;1.80]×10-3 TeV−4, respectively.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
◽  
M. Ablikim ◽  
M. N. Achasov ◽  
P. Adlarson ◽  
S. Ahmed ◽  
...  

Abstract Using 10.1 × 109J/ψ events produced by the Beijing Electron Positron Collider (BEPCII) at a center-of-mass energy $$ \sqrt{s} $$ s = 3.097 GeV and collected with the BESIII detector, we present a search for the rare semi-leptonic decay J/ψ → D−e+νe + c.c. No excess of signal above background is observed, and an upper limit on the branching fraction ℬ(J/ψ → D−e+νe + c. c.) < 7.1 × 10−8 is obtained at 90% confidence level. This is an improvement of more than two orders of magnitude over the previous best limit.


1993 ◽  
Vol 08 (40) ◽  
pp. 3853-3859 ◽  
Author(s):  
D. K. MAITY ◽  
P. K. BANERJEE ◽  
B. B. DAS ◽  
D. RAVINDRAN ◽  
D. K. BHATTACHARJEE

A study of intermittency in hadron-nucleus and the comparison with nucleus-nucleus interactions is presented. The power law behavior of the factorial moments and the variation of intermittency index with the center-of-mass energy are shown. Results favor the formation of quark-gluon plasma in preference to a cascade mechanism.


Author(s):  
Roberto Franceschini

We discuss the physics opportunities and challenges presented by high energy lepton colliders in the range of center-of-mass energy between few and several tens of TeV. The focus is on the progress attainable on the study of weak and Higgs interactions in connection with new physics scenarios motivated by the shortcomings of the Standard Model.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
A. D. Bolognino ◽  
Francesco Giovanni Celiberto ◽  
M. Fucilla ◽  
D. Yu. Ivanov ◽  
A. Papa

AbstractThe inclusive hadroproduction of two heavy quarks, featuring a large separation in rapidity, is proposed as a novel probe channel of the Balitsky–Fadin–Kuraev–Lipatov (BFKL) approach. In a theoretical setup which includes full resummation of leading logarithms in the center-of-mass energy and partial resummation of the next-to-leading ones, predictions for the cross section and azimuthal coefficients are presented for kinematic configurations typical of current and possible future experimental analyses at the LHC.


Sign in / Sign up

Export Citation Format

Share Document