scholarly journals QUANTUM AND CLASSICAL GAUGE SYMMETRIES IN A MODIFIED QUANTIZATION SCHEME

2001 ◽  
Vol 16 (10) ◽  
pp. 1775-1788 ◽  
Author(s):  
KAZUO FUJIKAWA ◽  
HIROAKI TERASHIMA

The use of the mass term as a gauge fixing term has been studied by Zwanziger, Parrinello and Jona-Lasinio, which is related to the nonlinear gauge [Formula: see text] of Dirac and Nambu in the large mass limit. We have recently shown that this modified quantization scheme is in fact identical to the conventional local Faddeev–Popov formula without taking the large mass limit, if one takes into account the variation of the gauge field along the entire gauge orbit and if the Gribov complications can be ignored. This suggests that the classical massive vector theory, for example, is interpreted in a more flexible manner either as a gauge invariant theory with a gauge fixing term added, or as a conventional massive nongauge theory. As for massive gauge particles, the Higgs mechanics, where the mass term is gauge-invariant, has a more intrinsic meaning. It is suggested that we extend the notion of quantum gauge symmetry (BRST symmetry) not only to classical gauge theory but also to a wider class of theories whose gauge symmetry is broken by some extra terms in the classical action. We comment on the implications of this extended notion of quantum gauge symmetry.

1997 ◽  
Vol 12 (23) ◽  
pp. 4217-4239 ◽  
Author(s):  
Yong-Wan Kim ◽  
Mu-In Park ◽  
Young-Jai Park ◽  
Sean J. Yoon

The BRST quantization of the Abelian Proca model is performed using the Batalin–Fradkin–Tyutin and the Batalin-Fradkin-Vilkovisky formalism. First, the BFT Hamiltonian method is applied in order to systematically convert a second class constraint system of the model into an effectively first class one by introducing new fields. In finding the involutive Hamiltonian we adopt a new approach which is simpler than the usual one. We also show that in our model the Dirac brackets of the phase space variables in the original second class constraint system are exactly the same as the Poisson brackets of the corresponding modified fields in the extended phase space due to the linear character of the constraints comparing the Dirac or Faddeev–Jackiw formalisms. Then, according to the BFV formalism we obtain that the desired resulting Lagrangian preserving BRST symmetry in the standard local gauge fixing procedure naturally includes the Stückelberg scalar related to the explicit gauge symmetry breaking effect due to the presence of the mass term. We also analyze the nonstandard nonlocal gauge fixing procedure.


2016 ◽  
Vol 31 (32) ◽  
pp. 1650171 ◽  
Author(s):  
Safia Yasmin ◽  
Anisur Rahaman

The generalized version of a lower dimensional model where vector and axial vector interactions get mixed up with different weights is considered. The bosonized version of which does not possess the local gauge symmetry. An attempt has been made here to construct the BRST invariant reformulation of this model using Batalin–Fradlin and Vilkovisky formalism. It is found that the extra field needed to make it gauge invariant turns into Wess–Zumino scalar with appropriate choice of gauge fixing. An application of finite field-dependent BRST and anti-BRST transformation is also made here in order to show the transmutation between the BRST symmetric and the usual nonsymmetric version of the model.


2002 ◽  
Vol 17 (40) ◽  
pp. 2605-2609 ◽  
Author(s):  
S. V. KUZMIN ◽  
D. G. C. McKEON

Gauge invariant generation of mass for a supersymmetric U(1) vector field through the use of a chiral Stueckelberg superfield is considered. When a Fayet–Iliopoulos D-term is also present, no breaking of supersymmetry ever occurs so long as the Stueckelberg mass is not zero. A moduli space in which gauge symmetry is spontaneously broken arises if there is no mass term for the matter superfields.


2021 ◽  
pp. 2150116
Author(s):  
Ronaldo Thibes

We identify a strong similarity among several distinct originally second-class systems, including both mechanical and field theory models, which can be naturally described in a gauge-invariant way. The canonical structure of such related systems is encoded into a gauge-invariant generalization of the quantum rigid rotor. We perform the BRST symmetry analysis and the BFV functional quantization for the mentioned gauge-invariant version of the generalized quantum rigid rotor. We obtain different equivalent effective actions according to specific gauge-fixing choices, showing explicitly their BRST symmetries. We apply and exemplify the ideas discussed to two particular models, namely, motion along an elliptical path and the [Formula: see text] nonlinear sigma model, showing that our results reproduce and connect previously unrelated known gauge-invariant systems.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850006 ◽  
Author(s):  
Alexander Reshetnyak

The Faddeev–Popov rules for a local and Poincaré-covariant Lagrangian quantization of a gauge theory with gauge group are generalized to the case of an invariance of the respective quantum actions, [Formula: see text], with respect to [Formula: see text]-parametric Abelian SUSY transformations with odd-valued parameters [Formula: see text], [Formula: see text] and generators [Formula: see text]: [Formula: see text], for [Formula: see text], implying the substitution of an [Formula: see text]-plet of ghost fields, [Formula: see text], instead of the parameter, [Formula: see text], of infinitesimal gauge transformations: [Formula: see text]. The total configuration spaces of fields for a quantum theory of the same classical model coincide in the [Formula: see text] and [Formula: see text] symmetric cases. The superspace of [Formula: see text] SUSY irreducible representation includes, in addition to Yang–Mills fields [Formula: see text], [Formula: see text] ghost odd-valued fields [Formula: see text], [Formula: see text] and [Formula: see text] even-valued [Formula: see text] for [Formula: see text], [Formula: see text]. To construct the quantum action, [Formula: see text], by adding to the classical action, [Formula: see text], of an [Formula: see text]-exact gauge-fixing term (with gauge fermion), a gauge-fixing procedure requires [Formula: see text] additional fields, [Formula: see text]: antighost [Formula: see text], [Formula: see text] even-valued [Formula: see text], 3 odd-valued [Formula: see text] and Nakanishi–Lautrup [Formula: see text] fields. The action of [Formula: see text] transformations on new fields as [Formula: see text]-irreducible representation space is realized. These transformations are the [Formula: see text] BRST symmetry transformations for the vacuum functional, [Formula: see text]. The space of all fields [Formula: see text] proves to be the space of an irreducible representation of the fields [Formula: see text] for [Formula: see text]-parametric SUSY transformations, which contains, in addition to [Formula: see text] the [Formula: see text] ghost–antighost, [Formula: see text], even-valued, [Formula: see text], odd-valued [Formula: see text] and [Formula: see text] fields. The quantum action is constructed by adding to [Formula: see text] an [Formula: see text]-exact gauge-fixing term with a gauge boson, [Formula: see text]. The [Formula: see text] SUSY transformations are by [Formula: see text] BRST transformations for the vacuum functional, [Formula: see text]. The procedures are valid for any admissible gauge. The equivalence with [Formula: see text] BRST-invariant quantization method is explicitly found. The finite [Formula: see text] BRST transformations are derived and the Jacobians for a change of variables related to them but with field-dependent parameters in the respective path integral are calculated. They imply the presence of a corresponding modified Ward identity related to a new form of the standard Ward identities and describe the problem of a gauge-dependence. An introduction into diagrammatic Feynman techniques for [Formula: see text] BRST invariant quantum actions for Yang–Mills theory is suggested.


2007 ◽  
Vol 22 (32) ◽  
pp. 6183-6201 ◽  
Author(s):  
USHA KULSHRESHTHA ◽  
D. S. KULSHRESHTHA

Using the Stueckelberg formalism, we construct a gauge-invariant version of the vector Schwinger model (VSM) with a photon mass term studied by one of us recently. This model describes two-dimensional massive electrodynamics with massless fermions, where the left-handed and right-handed fermions are coupled to the electromagnetic field with equal couplings. This model describing the 2D massive electrodynamics becomes gauge-noninvariant (GNI). This is in contrast to the case of the massless VSM which is a gauge-invariant (GI) theory (as a consequence of demanding the regularization for the theory to be GI). In this work we first construct a GI theory corresponding to this model describing the 2D massive electrodynamics, using the Stueckelberg formalism and then we recover the physical contents of the original GNI theory studied earlier, under some special gauge choice. We then study the Hamiltonian, path integral and BRST formulations of this GI theory under appropriate gauge-fixing. The theory presents a new class of models in the 2D quantum electrodynamics with massless fermions but with a photon mass term.


2012 ◽  
Vol 27 (27) ◽  
pp. 1250157 ◽  
Author(s):  
USHA KULSHRESHTHA

Vector Schwinger model with a mass term for the photon, describing 2D electrodynamics with massless fermions, studied by us recently [U. Kulshreshtha, Mod. Phys. Lett. A22, 2993 (2007); U. Kulshreshtha and D. S. Kulshreshtha, Int. J. Mod. Phys. A22, 6183 (2007); U. Kulshreshtha, PoS LC2008, 008 (2008)], represents a new class of models. This theory becomes gauge-invariant when studied on the light-front. This is in contrast to the instant-form theory which is gauge-non-invariant. In this work, we study the light-front Hamiltonian and path integral quantization of this theory under appropriate light-cone gauge-fixing. The discretized light-cone quantization of the theory where we wish to make contact with the experimentally observational aspects of the theory would be presented in a separate paper.


2014 ◽  
Vol 29 (30) ◽  
pp. 1450184 ◽  
Author(s):  
Alexander Reshetnyak

A consistent quantum treatment of general gauge theories with an arbitrary gauge-fixing in the presence of soft breaking of the BRST symmetry in the field–antifield formalism is developed. It is based on a gauged (involving a field-dependent parameter) version of finite BRST transformations. The prescription allows one to restore the gauge-independence of the effective action at its extremals and therefore also that of the conventional S-matrix for a theory with BRST-breaking terms being additively introduced into a BRST-invariant action in order to achieve a consistency of the functional integral. We demonstrate the applicability of this prescription within the approach of functional renormalization group to the Yang–Mills and gravity theories. The Gribov–Zwanziger action and the refined Gribov–Zwanziger action for a many-parameter family of gauges, including the Coulomb, axial and covariant gauges, are derived perturbatively on the basis of finite gauged BRST transformations starting from Landau gauge. It is proved that gauge theories with soft breaking of BRST symmetry can be made consistent if the transformed BRST-breaking terms satisfy the same soft BRST symmetry breaking condition in the resulting gauge as the untransformed ones in the initial gauge, and also without this requirement.


1999 ◽  
Vol 14 (06) ◽  
pp. 447-457 ◽  
Author(s):  
JOSE A. MAGPANTAY

Using the recently proposed nonlinear gauge condition [Formula: see text] we show the area law behavior of the Wilson loop and the linear dependence of the instantaneous gluon propagator. The field configurations responsible for confinement are those in the nonlinear sector of the gauge-fixing condition (the linear sector being the Coulomb gauge). The nonlinear sector is actually composed of "Gribov horizons" on the parallel surfaces ∂ · Aa=fa≠0. In this sector, the gauge field [Formula: see text] can be expressed in terms of fa and a new vector field [Formula: see text]. The effective dynamics of fa suggests nonperturbative effects. This was confirmed by showing that all spherically symmetric (in 4-D Euclidean) fa(x) are classical solutions and averaging these solutions using a Gaussian distribution (thereby treating these fields as random) lead to confinement. In essence the confinement mechanism is not quantum mechanical in nature but simply a statistical treatment of classical spherically symmetric fields on the "horizons" of ∂ · Aa=fa(x) surfaces.


Sign in / Sign up

Export Citation Format

Share Document