Phenomenological properties of unoriented D-brane models

2007 ◽  
Vol 22 (31) ◽  
pp. 5808-5818 ◽  
Author(s):  
Pascal Anastasopoulos

D -brane realizations of the Standard Model predict extra abelian gauge fields which are superficially anomalous. The anomalies are cancelled via appropriate couplings to axions and Chern-Simons-like couplings. The presence of such couplings has dramatic experimental consequences: a) they provide masses to the anomalous abelian gauge fields (which masses can be of order of a few TeV), b) they provide new contributions to couplings like Z '-¿ gamma Z , that may be considerable at LHC. This proceeding is mainely based on hep-th/0605225.

2016 ◽  
Vol 31 (20n21) ◽  
pp. 1650111 ◽  
Author(s):  
Pavel Yu. Moshin ◽  
Alexander A. Reshetnyak

We continue our research[Formula: see text] and extend the class of finite BRST–anti-BRST transformations with odd-valued parameters [Formula: see text], [Formula: see text], introduced in these works. In doing so, we evaluate the Jacobians induced by finite BRST–anti-BRST transformations linear in functionally-dependent parameters, as well as those induced by finite BRST–anti-BRST transformations with arbitrary functional parameters. The calculations cover the cases of gauge theories with a closed algebra, dynamical systems with first-class constraints, and general gauge theories. The resulting Jacobians in the case of linearized transformations are different from those in the case of polynomial dependence on the parameters. Finite BRST–anti-BRST transformations with arbitrary parameters induce an extra contribution to the quantum action, which cannot be absorbed into a change of the gauge. These transformations include an extended case of functionally-dependent parameters that implies a modified compensation equation, which admits nontrivial solutions leading to a Jacobian equal to unity. Finite BRST–anti-BRST transformations with functionally-dependent parameters are applied to the Standard Model, and an explicit form of functionally-dependent parameters [Formula: see text] is obtained, providing the equivalence of path integrals in any 3-parameter [Formula: see text]-like gauges. The Gribov–Zwanziger theory is extended to the case of the Standard Model, and a form of the Gribov horizon functional is suggested in the Landau gauge, as well as in [Formula: see text]-like gauges, in a gauge-independent way using field-dependent BRST–anti-BRST transformations, and in [Formula: see text]-like gauges using transverse-like non-Abelian gauge fields.


1994 ◽  
Vol 09 (33) ◽  
pp. 3053-3062 ◽  
Author(s):  
B. MACHET

We show how an Abelian spontaneously broken gauge theory of fermions endowed with a composite scalar multiplet becomes naturally anomaly-free, and yet correctly describes the couplings of a neutral isoscalar pion to two gauge fields and to leptons: the first coupling is the same as that computed from the chiral anomaly, and the second is identical with that obtained from the 'Partially Conserved Axial Current' hypothesis. The general (non-Abelian) case of the standard model is only mentioned and will be the subject of another work.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Upalaparna Banerjee ◽  
Joydeep Chakrabortty ◽  
Suraj Prakash ◽  
Shakeel Ur Rahaman ◽  
Michael Spannowsky

Abstract It is not only conceivable but likely that the spectrum of physics beyond the Standard Model (SM) is non-degenerate. The lightest non-SM particle may reside close enough to the electroweak scale that it can be kinematically probed at high-energy experiments and on account of this, it must be included as an infrared (IR) degree of freedom (DOF) along with the SM ones. The rest of the non-SM particles are heavy enough to be directly experimentally inaccessible and can be integrated out. Now, to capture the effects of the complete theory, one must take into account the higher dimensional operators constituted of the SM DOFs and the minimal extension. This construction, BSMEFT, is in the same spirit as SMEFT but now with extra IR DOFs. Constructing a BSMEFT is in general the first step after establishing experimental evidence for a new particle. We have investigated three different scenarios where the SM is extended by additional (i) uncolored, (ii) colored particles, and (iii) abelian gauge symmetries. For each such scenario, we have included the most-anticipated and phenomenologically motivated models to demonstrate the concept of BSMEFT. In this paper, we have provided the full EFT Lagrangian for each such model up to mass dimension 6. We have also identified the CP, baryon (B), and lepton (L) number violating effective operators.


1988 ◽  
Vol 01 (11n12) ◽  
pp. 455-455 ◽  
Author(s):  
A.M. POLYAKOV

We show that in (2+1) -dimensional abelian gauge theory with the Chern-Simons term in the action, charged particles reverse their statistics.


2016 ◽  
Vol 31 (16) ◽  
pp. 1630015 ◽  
Author(s):  
Robert Delbourgo

Local events are characterized by “where”, “when” and “what”. Just as (bosonic) spacetime forms the backdrop for location and time, (fermionic) property space can serve as the backdrop for the attributes of a system. With such a scenario I shall describe a scheme that is capable of unifying gravitation and the other forces of nature. The generalized metric contains the curvature of spacetime and property separately, with the gauge fields linking the bosonic and fermionic arenas. The super-Ricci scalar can then automatically yield the spacetime Lagrangian of gravitation and the Standard Model (plus a cosmological constant) upon integration over property coordinates.


2012 ◽  
Vol 27 (26) ◽  
pp. 1230025 ◽  
Author(s):  
JORGE C. ROMÃO ◽  
JOÃO P. SILVA

When performing a full calculation within the standard model (SM) or its extensions, it is crucial that one utilizes a consistent set of signs for the gauge couplings and gauge fields. Unfortunately, the literature is plagued with differing signs and notations. We present all SM Feynman rules, including ghosts, in a convention-independent notation, and we table the conventions in close to 40 books and reviews.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
A. Bochniak ◽  
A. Sitarz ◽  
P. Zalecki

Abstract We compute the leading terms of the spectral action for a noncommutative geometry model that has no fermion doubling. The spectral triple describing it, which is chiral and allows for CP-symmetry breaking, has the Dirac operator that is not of the product type. Using Wick rotation we derive explicitly the Lagrangian of the model from the spectral action for a flat metric, demonstrating the appearance of the topological θ-terms for the electroweak gauge fields.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Patricio Gaete ◽  
José A. Helayël-Neto

By using the gauge-invariant but path-dependent variables formalism, we consider a recently proposed topologically massiveU1W×U(1)YChern-Simons-Higgs theory in2+1dimensions. In particular, we inspect the impact of a Chern-Simons mixing term between two Abelian gauge fields on physical observables. We pursue our investigation by analyzing the model in two different situations. In the first case, where we integrate the massive excitation and consider an effective model for the massless field, we show that the interaction energy contains a linear term leading to the confinement of static charge probes along with a screening contribution. In the second situation, where the massless field can be exactly integrated with its constraint duly taken into account, the interesting feature is that the resulting effective model describes a purely screening phase, without any trace of a confining regime.


2012 ◽  
Vol 2012 ◽  
pp. 1-2
Author(s):  
Hoang Ngoc Long ◽  
Vicente Pleitez ◽  
Marc Sher ◽  
Masaki Yasue

Sign in / Sign up

Export Citation Format

Share Document