STRONGLY INTERACTING MATTER AT RHIC

2009 ◽  
Vol 24 (18n19) ◽  
pp. 3266-3275
Author(s):  
J. H. THOMAS

Experiments at the Relativistic Heavy Ion Collider (RHIC) have yielded an abundance of data which suggest that a new state of matter has been produced in ultra-relativistic heavy ion collisions. This new state of matter is a strongly interacting Quark Gluon Plasma that behaves like a nearly perfect fluid with very low viscosity. I will review the experimental observations that point to the existence of the sQGP, and in particular I will emphasize the particle spectra and the flow data.

2012 ◽  
Vol 27 (02) ◽  
pp. 1250009 ◽  
Author(s):  
VINEET AGOTIYA ◽  
LATA DEVI ◽  
UTTAM KAKADE ◽  
BINOY KRISHNA PATRA

We have developed an equation of state for strongly interacting quark–gluon plasma (QGP) in the framework of strongly coupled plasma with appropriate modifications to take account of color and flavor degrees of freedom and the interactions among themselves. For this purpose we used the effective potential to improve the plasma parameter (Γ) by correcting the full Cornell potential with a dielectric function embodying the effects of the deconfined medium and not its Coulomb part alone and obtain the equation of state in terms of Γ. Our results on thermodynamic observables viz. pressure, energy density, speed of sound etc. nicely fit to the results of lattice equation of state for gluon, massless as well massive flavored plasma. We have then employed our equation of state to estimate the quarkonium suppression in an expanding QGP produced in the relativistic heavy-ion collisions. We have found that our predictions matches with the recent PHENIX data on the centrality dependence of J/ψ suppression in Au+Au collisions at BNL RHIC within the limit of other uncertainties. We have also predicted for the ϒ suppression in Pb+Pb collisions at LHC energy which could be tested in the ALICE experiments at CERN LHC.


1991 ◽  
Vol 06 (04) ◽  
pp. 517-558 ◽  
Author(s):  
SIBAJI RAHA ◽  
BIKASH SINHA

We review the production of dilepton pairs, direct photons and diphoton pairs in ultrarelativistic heavy ion collisions, with special attention to the applicability of these particles as the signal for a new state of matter—the quark-gluon plasma.


2015 ◽  
Vol 30 (32) ◽  
pp. 1550162 ◽  
Author(s):  
Partha Bagchi ◽  
Ajit M. Srivastava

Rapid thermalization in ultra-relativistic heavy-ion collisions leads to fast changing potential between a heavy quark and antiquark from zero temperature potential to the finite temperature one. Time-dependent perturbation theory can then be used to calculate the survival probability of the initial quarkonium state. In view of very short time scales of thermalization at relativistic heavy-ion collider (RHIC) and large hadron collider (LHC) energies, we calculate the survival probability of [Formula: see text] and [Formula: see text] using sudden approximation. Our results show that quarkonium decay may be significant even when temperature of quark–gluon plasma (QGP) remains low enough so that the conventional quarkonium melting due to Debye screening is ineffective.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Liliana Apolinário ◽  
André Cordeiro ◽  
Korinna Zapp

AbstractThe physics program of ultra-relativistic heavy-ion collisions at the Large Hadron Collider (LHC) and Relativistic Heavy-Ion Collider (RHIC) has brought a unique insight into the hot and dense QCD matter created in such collisions, the Quark-Gluon Plasma (QGP). Jet quenching, a collection of medium-induced modifications of the jets’ internal structure that occur through their development in dense QCD matter, has a unique potential to assess the time structure of the produced medium. In this work, we perform an exploratory study to identify jet reclustering tools that can potentiate future QGP tomographic measurements with jets at current energies. Our results show that by using the inverse of formation time to obtain the jet clustering history, one can identify more accurately the time structure of QCD emissions inside jets, even in the presence of jet quenching.


Author(s):  
Debasish Das

A strongly coupled Quark–Gluon Plasma (sQGP) is created in the high-energy heavy-ion collisions at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC). Our present understanding of sQGP as a very good liquid with astonishingly low viscosity is reviewed. With the arrival of the interesting results from LHC in high-energy [Formula: see text] and [Formula: see text], a new endeavor to characterize the transition from these small systems to heavy ions [Formula: see text] is now in place, since even the small systems showed prominent similarities to heavy ions in the rising multiplicity domains. An outlook of future possibilities for better measurements is also made at the end of this brief review.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Ying-Hua Pan ◽  
Wei-Ning Zhang

At very initial stage of relativistic heavy ion collisions a wave of quark-gluon matter is produced from the break-up of the strong color electric field and then thermalizes at a short time scale (~1 fm/c). However, the quark-gluon plasma (QGP) system is far out of chemical equilibrium, especially for the heavy quarks which are supposed to reach chemical equilibrium much late. In this paper a continuing quark production picture for strongly interacting QGP system is derived, using the quark number susceptibilities and the equation of state; both of them are from the results calculated by the Wuppertal-Budapest lattice QCD collaboration. We find that the densities of light quarks increase by 75% from the temperatureT=400 MeV toT=150 MeV, while the density of strange quark annihilates by 18% in the temperature region. We also offer a discussion on how this late production of quarks affects the final charge-charge correlations.


2015 ◽  
Vol 2015 ◽  
pp. 1-23 ◽  
Author(s):  
Li-Na Gao ◽  
Fu-Hu Liu

We propose a new revised Landau hydrodynamic model to study systematically the pseudorapidity distributions of charged particles produced in heavy ion collisions over an energy range from a few GeV to a few TeV per nucleon pair. The interacting system is divided into three sources, namely, the central, target, and projectile sources, respectively. The large central source is described by the Landau hydrodynamic model and further revised by the contributions of the small target/projectile sources. The modeling results are in agreement with the available experimental data at relativistic heavy ion collider, large hadron collider, and other energies for different centralities. The value of square speed of sound parameter in different collisions has been extracted by us from the widths of rapidity distributions. Our results show that, in heavy ion collisions at energies of the two colliders, the central source undergoes a phase transition from hadronic gas to quark-gluon plasma liquid phase; meanwhile, the target/projectile sources remain in the state of hadronic gas. The present work confirms that the quark-gluon plasma is of liquid type rather than being of a gas type.


Sign in / Sign up

Export Citation Format

Share Document