TWO-PROTON CORRELATION FUNCTION FOR THE pp → pp + η AND pp → pp + pions REACTIONS

2011 ◽  
Vol 26 (03n04) ◽  
pp. 660-662
Author(s):  
◽  
PAWEŁ KLAJA ◽  
PAWEŁ MOSKAL

For the very first time, the correlation femtoscopy method is applied to a kinematically complete measurement of meson production in the collisions of hadrons. The shape of the two-proton correlation function derived for the pp → ppη reaction differs from that for the pp → pp(pions) and both do not show a peak structure opposite to results determined for inclusive measurements of heavy ion collisions.

2016 ◽  
Vol 130 ◽  
pp. 05016 ◽  
Author(s):  
Andrzej Rybicki ◽  
Antoni Szczurek ◽  
Mariola Kłusek-Gawenda ◽  
Nikolaos Davis ◽  
Vitalii Ozvenchuk ◽  
...  

2018 ◽  
Vol 171 ◽  
pp. 01003
Author(s):  
Rachid Nouicer

Hadrons conveying strange quarks or heavy quarks are essential probes of the hot and dense medium created in relativistic heavy-ion collisions. With hidden strangeness, ϕ meson production and its transport in the nuclear medium have attracted high interest since its discovery. Heavy quark-antiquark pairs, like charmonium and bottomonium mesons, are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. In this context, the PHENIX collaboration carries out a comprehensive physics program which studies the ϕ meson production, and heavy flavor production in relativistic heavy-ion collisions at RHIC. In recent years, the PHENIX experiment upgraded the detector in installing silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region. With these new upgrades, the experiment has collected large data samples, and enhanced the capability of heavy flavor measurements via precision tracking. This paper summarizes the latest PHENIX results concerning ϕ meson, open and closed charm and beauty heavy quark production in relativistic heavy-ion collisions. These results are presented as a function of rapidity, energy and system size, and their interpretation with respect to the current theoretical understanding.


Author(s):  
Sylwia Bazak ◽  
Stanisław Mrówczyński

Abstract The thermal and coalescence models both describe well yields of light nuclei produced in relativistic heavy-ion collisions at LHC. We propose to measure the yield of $$^4\mathrm{Li}$$ 4 Li and compare it to that of $$^4\mathrm{He}$$ 4 He to falsify one of the models. Since the masses of $$^4\mathrm{He}$$ 4 He and $$^4\mathrm{Li}$$ 4 Li are almost equal, the yield of $$^4\mathrm{Li}$$ 4 Li is about 5 times bigger than that of $$^4\mathrm{He}$$ 4 He in the thermal model because of different numbers of spin states of the two nuclides. Their internal structures are, however, very different: the alpha particle is well bound and compact while $$^4\mathrm{Li}$$ 4 Li is weakly bound and loose. Consequently, the ratio of yields of $$^4\mathrm{Li}$$ 4 Li to $$^4\mathrm{He}$$ 4 He is significantly smaller in the coalescence model and it strongly depends on the collision centrality. Since the nuclide $$^4\mathrm{Li}$$ 4 Li is unstable and it decays into $$^3\mathrm{He}$$ 3 He and p, the yield of $$^4\mathrm{Li}$$ 4 Li can be experimentally obtained through a measurement of the $$p\!-\!^3\mathrm{He}$$ p - 3 He correlation function. The function carries information not only about the yield of $$^4\mathrm{Li}$$ 4 Li but also about the source of $$^3\mathrm{He}$$ 3 He and allows one to determine through a source-size measurement whether of $$^3\mathrm{He}$$ 3 He is directly emitted from the fireball or it is formed afterwards. We compute the correlation function taking into account the s-wave scattering and Coulomb repulsion together with the resonance interaction responsible for the $$^4\mathrm{Li}$$ 4 Li nuclide. We discuss how to infer information about an origin of $$^3\mathrm{He}$$ 3 He from the correlation function, and finally a method to obtain the yield of $$^4\mathrm{Li}$$ 4 Li is proposed.


Sign in / Sign up

Export Citation Format

Share Document