scholarly journals TESTING TIMES FOR SUPERSYMMETRY: LOOKING UNDER THE LAMP POST

2013 ◽  
Vol 28 (26) ◽  
pp. 1350134 ◽  
Author(s):  
AMOL DIGHE ◽  
DIPTIMOY GHOSH ◽  
KETAN M. PATEL ◽  
SREERUP RAYCHAUDHURI

We make a critical study of two highly-constrained models of supersymmetry — the constrained minimal supersymmetric standard model (cMSSM), and the nonuniversal Higgs mass (NUHM) model — in the light of the 125–126 GeV Higgs boson, the first observation of Bs→μμ at the LHCb, and the updated B → τν branching ratio at BELLE. It turns out that these models are still allowed by the experimental data, even if we demand that there be a light stop with mass less than 1.5 TeV. The only significant effects of all these constraints are to push the mass of the light stop above ~500 GeV, and to prefer the universal trilinear coupling A0to be large and negative. We calculate the Higgs boson branching ratios to WW, ZZ, ττ and γγ in these models and show that improved experimental limits on these could put them to the most stringent experimental tests yet.

2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
T T Hong ◽  
H T Hung ◽  
H H Phuong ◽  
L T T Phuong ◽  
L T Hue

Abstract In the framework of the flipped 3-3-1 model introduced recently [R. M. Fonseca and M. Hirsch, J. High Energy Phys. 1608, 003 (2016)], the lepton-flavor-violating (LFV) decay $\mu \rightarrow 3e$ was predicted to have a large branching ratio (Br) close to the recent experimental limit. We will show that the Br of LFV decays of the standard-model-like (SM-like) Higgs boson decays (LFVHD) Br$(h\rightarrow e_ae_b)$ may also be large. Namely, Br$(h\rightarrow \mu\tau,e\tau)$ can reach values of $\mathcal{O}(10^{-4}){-}\mathcal{O}(10^{-5})$, which will reach the upcoming experimental sensitivities. On the other hand, for LFV decays of charged leptons (cLFV) $(e_b\rightarrow e_a\gamma)$, the branching ratios are well below experimental bounds.


2021 ◽  
Vol 36 (30) ◽  
Author(s):  
Jong-Phil Lee

We analyze the [Formula: see text] anomalies associated with the [Formula: see text] decays in the unparticle model. The fraction of the branching ratios [Formula: see text] and other parameters related to the polarization are fitted to the experimental data by minimizing [Formula: see text]. The best-fit values are [Formula: see text] and [Formula: see text] which are still larger than the standard model predictions. We find that our results safely render the branching ratio [Formula: see text] below [Formula: see text].


1988 ◽  
Vol 03 (17) ◽  
pp. 1677-1682 ◽  
Author(s):  
M.I. DOBROLIUBOV ◽  
A. YU. IGNATIEV

We investigate various mechanisms of enhancement of the branching ratios of the decay KL→π0l+l− as compared to the predictions of the Standard Model. We propose a model with several Higgs doublets, which contains a Higgs boson with nearly equal couplings to e+e− and µ+µ− pairs. In this model, the branching ratio BR (KL→π0e+e−, π0µ+µ−) can be close to the present experimental upper bounds.


2017 ◽  
Vol 32 (22) ◽  
pp. 1750135 ◽  
Author(s):  
Tarek Ibrahim ◽  
Ahmad Itani ◽  
Pran Nath ◽  
Anas Zorik

In the Standard Model, flavor violating decays of the top quark and of the Higgs boson are highly suppressed. Further, the flavor violating decays of the top and of the Higgs are also small in MSSM and not observable in current or in near future experiment. In this work, we show that much larger branching ratios for these decays can be achieved in an extended MSSM model with an additional vector-like quark generation. Specifically, we show that in the extended model, one can achieve branching ratios for [Formula: see text] and [Formula: see text] as large as the current experimental upper limits given by the ATLAS and the CMS Collaborations. We also analyze the flavor violating quark decay of the Higgs boson, i.e. [Formula: see text] and [Formula: see text]. Here again, one finds that the branching ratio for these decays can be as large as [Formula: see text]. The analysis is done with inclusion of the CP phases in the Higgs sector, and the effect of CP phases on the branching ratios is investigated. Specifically, the Higgs sector spectrum and mixings are computed involving quarks and mirror quarks, squarks and mirror squarks in the loops consistent with the Higgs boson mass constraint. The resulting effective Lagrangian with inclusion of the vector-like quark generation induce flavor violating decays at the tree level. In the analysis, we also include the experimental constraints from the flavor changing quark decays of the [Formula: see text] boson. The test of the branching ratios predicted could come with further data from LHC13 and such branching ratios could also be accessible at future colliders such as the Higgs factories where the Higgs couplings to fermions will be determined with greater precision.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
E. Cortina Gil ◽  
◽  
A. Kleimenova ◽  
E. Minucci ◽  
S. Padolski ◽  
...  

Abstract The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 109 tagged π0 mesons from K+ → π+π0(γ), searching for the decay of the π0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4.4 × 10−9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit on the branching ratio for the decay K+ → π+X, where X is a particle escaping detection with mass in the range 0.110–0.155 GeV/c2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aoife Bharucha ◽  
Diogo Boito ◽  
Cédric Méaux

Abstract In this paper we consider the decay D+ → π+ℓ+ℓ−, addressing in particular the resonance contributions as well as the relatively large contributions from the weak annihilation diagrams. For the weak annihilation diagrams we include known results from QCD factorisation at low q2 and at high q2, adapting the existing calculation for B decays in the Operator Product Expansion. The hadronic resonance contributions are obtained through a dispersion relation, modelling the spectral functions as towers of Regge-like resonances in each channel, as suggested by Shifman, imposing the partonic behaviour in the deep Euclidean. The parameters of the model are extracted using e+e− → (hadrons) and τ → (hadrons) + ντ data as well as the branching ratios for the resonant decays D+ → π+R(R → ℓ+ℓ−), with R = ρ, ω, and ϕ. We perform a thorough error analysis, and present our results for the Standard Model differential branching ratio as a function of q2. Focusing then on the observables FH and AFB, we consider the sensitivity of this channel to effects of physics beyond the Standard Model, both in a model independent way and for the case of leptoquarks.


SPE Journal ◽  
2013 ◽  
Vol 18 (05) ◽  
pp. 818-828 ◽  
Author(s):  
M. Hosein Kalaei ◽  
Don W. Green ◽  
G. Paul Willhite

Summary Wettability modification of solid rocks with surfactants is an important process and has the potential to recover oil from reservoirs. When wettability is altered by use of surfactant solutions, capillary pressure, relative permeabilities, and residual oil saturations change wherever the porous rock is contacted by the surfactant. In this study, a mechanistic model is described in which wettability alteration is simulated by a new empirical correlation of the contact angle with surfactant concentration developed from experimental data. This model was tested against results from experimental tests in which oil was displaced from oil-wet cores by imbibition of surfactant solutions. Quantitative agreement between the simulation results of oil displacement and experimental data from the literature was obtained. Simulation of the imbibition of surfactant solution in laboratory-scale cores with the new model demonstrated that wettability alteration is a dynamic process, which plays a significant role in history matching and prediction of oil recovery from oil-wet porous media. In these simulations, the gravity force was the primary cause of the surfactant-solution invasion of the core that changed the rock wettability toward a less oil-wet state.


2012 ◽  
Vol 11 (04) ◽  
pp. 709-721 ◽  
Author(s):  
QIAN-ZHEN SU ◽  
JIE YU ◽  
KAI-JUN YUAN ◽  
SHU-LIN CONG

Above-threshold dissociation (ATD) process of the molecular ions HD+ steered by a femtosecond laser pulse train (LPT) is investigated theoretically using the time-dependent quantum wave packet method. Energy-dependent distributions of ATD fragments are analyzed by using an asymptotic-flow expression in the momentum space. It is found that fragment kinetic energy spectra shift to low energy region with increasing pulse number of LPT. The photofragment branching ratio between the 1sσg and 2pσu dissociation channels is sensitive to the pulse number of LPT. The momentum distribution of the ATD fragments is discussed in detail.


2015 ◽  
Vol 2015 ◽  
pp. 1-26 ◽  
Author(s):  
S. Heinemeyer ◽  
J. Hernandez-Garcia ◽  
M. J. Herrero ◽  
X. Marcano ◽  
A. M. Rodriguez-Sanchez

We study the radiative corrections to the mass of the lightest Higgs boson of the MSSM from three generations of Majorana neutrinos and sneutrinos. The spectrum of the MSSM is augmented by three right handed neutrinos and their supersymmetric partners. A seesaw mechanism of type I is used to generate the physical neutrino masses and oscillations that we require to be in agreement with present neutrino data. We present a full one-loop computation of these Higgs mass corrections and analyze in full detail their numerical size in terms of both the MSSM and the new (s)neutrino parameters. A critical discussion on the different possible renormalization schemes and their implications, in particular concerning decoupling, is included.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Andrea Rapisarda ◽  
Alessio Desando ◽  
Elena Campagnoli ◽  
Roberto Taurino

The design of modern aircrafts propulsion systems is strongly influenced by the important objective of environmental impact reduction. Through a great number of researches carried out in the last decades, significant improvements have been obtained in terms of lower fuel consumption and pollutant emission. Experimental tests are a necessary step to achieve new solutions that are more efficient than the current designs, even if during the preliminary design phase, a valid alternative to expensive experimental tests is the implementation of numerical models. The processing power of modern computers allows indeed the simulation of more complex and detailed phenomena than the past years. The present work focuses on the implementation of a numerical model for rotating stepped labyrinth seals installed in low-pressure turbines. These components are widely employed in sealing turbomachinery to reduce the leakage flow between rotating components. The numerical simulations were performed by using computational fluid dynamics (CFD) methodology, focusing on the leakage performances at different rotating speeds and inlet preswirl ratios. Investigations on velocity profiles into seal cavities were also carried out. To begin with, a smooth labyrinth seal model was validated by using the experimental data found in the literature. The numerical simulations were extended to the honeycomb labyrinth seals, with the validation performed on the velocity profiles. Then, the effects of two geometrical parameters, the rounded fin tip leading edge, and the step position were numerically investigated for both smooth and honeycomb labyrinth seals. The obtained results are generally in good agreement with the experimental data. The main effect found when the fin tip leading edge was rounded was a large increase in leakage flow, while the step position contribution to the flow path behavior is nonmonotone.


Sign in / Sign up

Export Citation Format

Share Document