scholarly journals Constraints on the primordial power spectrum of small scales using the neutrino signals from the dark matter decay

2014 ◽  
Vol 29 (32) ◽  
pp. 1450194 ◽  
Author(s):  
Yupeng Yang

Many inflation theories predict that the primordial power spectrum is scale invariant. The amplitude of the power spectrum can be constrained by different observations such as the cosmic microwave background (CMB), Lyman-α, large-scale structures and primordial black holes (PBHs). Although the constraints from the CMB are robust, the corresponding scales are very large (10-4 < k < 1 Mpc -1). For small scales (k > 1 Mpc -1), the research on the PBHs provides much weaker limits. Recently, ultracompact dark matter minihalos (UCMHs) was proposed and it was found that they could be used to constraint the small-scale primordial power spectrum. The limits obtained by the research on the UCMHs are much better than that of PBHs. Most of previous works focus on the dark matter annihilation within the UCMHs, but if the dark matter particles do not annihilate the decay is another important issue. In previous work [Y.-P. Yang, G.-L. Yang and H.-S. Zong, Europhys. Lett.101, 69001 (2013)], we investigated the gamma-ray flux from the UCMHs due to the dark matter decay. In addition to these flux, the neutrinos are usually produced going with the gamma-ray photons especially for the lepton channels. In this work, we studied the neutrino flux from the UCMHs due to the dark matter decay. Finally, we got the constraints on the amplitude of primordial power spectrum of small scales.

2020 ◽  
Vol 494 (3) ◽  
pp. 4334-4342 ◽  
Author(s):  
Kunihiko Furugori ◽  
Katsuya T Abe ◽  
Toshiyuki Tanaka ◽  
Daiki Hashimoto ◽  
Hiroyuki Tashiro ◽  
...  

ABSTRACT Ultracompact minihaloes (UCMHs) can form after the epoch of matter–radiation equality, if the density fluctuations of dark matter have significantly large amplitude on small scales. The constraint on the UCMH abundance allows us to access such small-scale fluctuations. In this paper, we present that, through the measurement of 21-cm fluctuations before the epoch of reionization, we can obtain a constraint on the UCMH abundance. We calculate the 21-cm signal from UCMHs and show that UCMHs provide the enhancement of the 21-cm fluctuations. We also investigate the constraint on the UCMH abundance and small-scale curvature perturbations. Our results indicate that the upcoming 21-cm observation, the Square Kilometre Array (SKA), provides the constraint on amplitude of primordial curvature power spectrum, ${\cal A}_{\zeta } \lesssim 10^{-6}$ on 100 ≲ k ≲ 1000 Mpc−1. Although it is not stronger than the one from the non-detection of gamma-rays induced by dark matter annihilation in UCMHs, the constraint by the SKA will be important because this constraint is independent of the dark matter particle model.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
K. Belotsky ◽  
M. Khlopov ◽  
A. Kirillov

Existence of new gauge U(1) symmetry possessed by dark matter (DM) particles implies the existence of a new Coulomb-like interaction, which leads to Sommerfeld-Gamow-Sakharov enhancement of dark matter annihilation at low relative velocities. We discuss a possibility to put constraints on such dark forces of dark matter from the observational data on the gamma radiation in our Galaxy. Gamma-rays are supposed to originate from annihilation of DM particles in the small scale clumps, in which annihilation rate is supposed to be enhanced, besides higher density, due to smaller relative velocitiesvof DM particles. For possible cross sections, mass of annihilating particles, masses of clumps, and the contribution of annihilating particles in the total DM density we constrain the strength of new dark long range forces from comparison of predicted gamma-ray signal with Fermi/LAT data on unidentified point-like gamma-ray sources (PGS) as well as on diffuseγ-radiation. Both data on diffuse radiation and data on PGS put lower constraints on annihilation cross section at any dark interaction constant, where diffuse radiation provides stronger constraint at smaller clump mass. Density of annihilating DM particles is conventionally supposed to be defined by the frozen annihilation processes in early Universe.


2015 ◽  
Vol 93 (2) ◽  
pp. 250-259 ◽  
Author(s):  
Stacy S. McGaugh

The concordance model of cosmology, ΛCDM, provides a satisfactory description of the evolution of the universe and the growth of large-scale structure. Despite considerable effort, this model does not at present provide a satisfactory description of small-scale structure and the dynamics of bound objects like individual galaxies. In contrast, MOND provides a unique and predictively successful description of galaxy dynamics, but is mute on the subject of cosmology. Here I briefly review these contradictory world views, emphasizing the wealth of distinct interlocking lines of evidence that went into the development of ΛCDM while highlighting the practical impossibility that it can provide a satisfactory explanation of the observed MOND phenomenology in galaxy dynamics. I also briefly review the baryon budget in groups and clusters of galaxies where neither paradigm provides an entirely satisfactory description of the data. Relatively little effort has been devoted to the formation of structure in MOND; I review some of what has been done. While it is impossible to predict the power spectrum of the microwave background temperature fluctuations in the absence of a complete relativistic theory, the amplitude ratio of the first to second peaks was correctly predicted a priori. However, the simple model that makes this predictions does not explain the observed amplitude of the third and subsequent peaks (3e, 4e, …). MOND anticipates that structure forms more quickly than in ΛCDM. This motivated the prediction that reionization would happen earlier in MOND than originally expected in ΛCDM, as subsequently observed. This also provides a natural explanation for massive, early clusters of galaxies and large, empty voids. However, it is far from obvious that the mass spectrum of galaxy clusters or the power spectrum of galaxies can be explained in MOND, two things that ΛCDM does well. Critical outstanding issues are the development of an acceptable relativistic parent theory for MOND, and the reality of the non-baryonic dark matter of ΛCDM. Do suitable dark matter particles exist, or are they a modern æther?


2021 ◽  
Vol 503 (4) ◽  
pp. 5638-5645
Author(s):  
Gábor Rácz ◽  
István Szapudi ◽  
István Csabai ◽  
László Dobos

ABSTRACT The classical gravitational force on a torus is anisotropic and always lower than Newton’s 1/r2 law. We demonstrate the effects of periodicity in dark matter only N-body simulations of spherical collapse and standard Lambda cold dark matter (ΛCDM) initial conditions. Periodic boundary conditions cause an overall negative and anisotropic bias in cosmological simulations of cosmic structure formation. The lower amplitude of power spectra of small periodic simulations is a consequence of the missing large-scale modes and the equally important smaller periodic forces. The effect is most significant when the largest mildly non-linear scales are comparable to the linear size of the simulation box, as often is the case for high-resolution hydrodynamical simulations. Spherical collapse morphs into a shape similar to an octahedron. The anisotropic growth distorts the large-scale ΛCDM dark matter structures. We introduce the direction-dependent power spectrum invariant under the octahedral group of the simulation volume and show that the results break spherical symmetry.


Author(s):  
F. Frontera ◽  
E. Virgilli ◽  
C. Guidorzi ◽  
P. Rosati ◽  
R. Diehl ◽  
...  

AbstractNuclear astrophysics, and particularly nuclear emission line diagnostics from a variety of cosmic sites, has remained one of the least developed fields in experimental astronomy, despite its central role in addressing a number of outstanding questions in modern astrophysics. Radioactive isotopes are co-produced with stable isotopes in the fusion reactions of nucleosynthesis in supernova explosions and other violent events, such as neutron star mergers. The origin of the 511 keV positron annihilation line observed in the direction of the Galactic Center is a 50-year-long mystery. In fact, we still do not understand whether its diffuse large-scale emission is entirely due to a population of discrete sources, which are unresolved with current poor angular resolution instruments at these energies, or whether dark matter annihilation could contribute to it. From the results obtained in the pioneering decades of this experimentally-challenging window, it has become clear that some of the most pressing issues in high-energy astrophysics and astro-particle physics would greatly benefit from significant progress in the observational capabilities in the keV-to-MeV energy band. Current instrumentation is in fact not sensitive enough to detect radioactive and annihilation lines from a wide variety of phenomena in our and nearby galaxies, let alone study the spatial distribution of their emission. In this White Paper (WP), we discuss how unprecedented studies in this field will become possible with a new low-energy gamma-ray space experiment, called ASTENA (Advanced Surveyor of Transient Events and Nuclear Astrophysics), which combines new imaging, spectroscopic and polarization capabilities. In a separate WP (Guidorzi et al. 39), we discuss how the same mission concept will enable new groundbreaking studies of the physics of Gamma–Ray Bursts and other high-energy transient phenomena over the next decades.


Sign in / Sign up

Export Citation Format

Share Document