scholarly journals Local zeta regularization and the scalar Casimir effect III. The case with a background harmonic potential

2015 ◽  
Vol 30 (35) ◽  
pp. 1550213 ◽  
Author(s):  
Davide Fermi ◽  
Livio Pizzocchero

Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we renormalize the vacuum expectation value of the stress-energy tensor (and of the total energy) for a scalar field in presence of an external harmonic potential.

2016 ◽  
Vol 31 (04n05) ◽  
pp. 1650003 ◽  
Author(s):  
Davide Fermi ◽  
Livio Pizzocchero

Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we compute the renormalized vacuum expectation value of several observables (in particular, of the stress–energy tensor) for a massless scalar field confined within a rectangular box of arbitrary dimension.


The massless spin-½ and spin-3/2 fields are quantized in the ‘Rindler wedge.’ The vacuum expectation value of the stress-energy tensor is calculated for the spin-½ field and is found to correspond to the absence from the vacuum of black body radiation. Though thermal, the spectrum of the stress tensor has a non-Planckian form.


1997 ◽  
Vol 06 (04) ◽  
pp. 449-463 ◽  
Author(s):  
M. Bordag ◽  
J. Lindig ◽  
V. M. Mostepanenko ◽  
Yu. V. Pavlov

The vacuum expectation value of the stress–energy tensor of a quantized scalar field with arbitrary curvature coupling in quasi-Euclidean background is calculated. The early time approximation for nonconformal fields is introduced. This approximation makes it possible to represent the matrix elements of the stress–energy tensor as explicit functionals of the scale factor. In the case of scale factors depending on time by the degree law the energy density is calculated explicitly. It is shown that the new contributions due to nonconformal curvature coupling significantly dominate the previously known conformal contributions.


2013 ◽  
Vol 28 (01) ◽  
pp. 1350001 ◽  
Author(s):  
V. A. DE LORENCI ◽  
G. MENEZES ◽  
N. F. SVAITER

We investigate the effects of light-cone fluctuations over the renormalized vacuum expectation value of the stress–energy tensor of a real massless minimally coupled scalar field defined in a (d+1)-dimensional flat space–time with topology [Formula: see text]. For modeling the influence of light-cone fluctuations over the quantum field, we consider a random Klein–Gordon equation. We study the case of centered Gaussian processes. After taking into account all the realizations of the random processes, we present the correction caused by random fluctuations. The averaged renormalized vacuum expectation value of the stress–energy associated with the scalar field is presented.


1989 ◽  
Vol 04 (10) ◽  
pp. 961-970
Author(s):  
J. GONZÁLEZ

The anomalous conformal dependence of the vacuum wave-functional is studied in the non-perturbative regime of the closed bosonic string theory. It is shown that the vanishing of the vacuum expectation value of the stress-energy tensor trace leads to the implementation of a suitable variational condition on the wave-functional, provided that the dilaton condensate be taken as a conformal compensator for the graviton condensate of the embedding space.


2008 ◽  
Vol 23 (32) ◽  
pp. 2763-2770 ◽  
Author(s):  
F. RAHAMAN ◽  
P. GHOSH

Recently, W. A. Hiscock4studied the semi classical gravitational effects around global monopole. He obtained the vacuum expectation value of the stress–energy tensor of an arbitrary collection of conformal mass less free quantum fields (scalar, spinor and vectors) in the spacetime of a global monopole. With this stress–energy tensor, we study the semiclassical gravitational effects of a global monopole in the context of Brans–Dicke theory of gravity.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Junichi Haruna ◽  
Hikaru Kawai

Abstract In the standard model, the weak scale is the only parameter with mass dimensions. This means that the standard model itself cannot explain the origin of the weak scale. On the other hand, from the results of recent accelerator experiments, except for some small corrections, the standard model has increased the possibility of being an effective theory up to the Planck scale. From these facts, it is naturally inferred that the weak scale is determined by some dynamics from the Planck scale. In order to answer this question, we rely on the multiple point criticality principle as a clue and consider the classically conformal $\mathbb{Z}_2\times \mathbb{Z}_2$ invariant two-scalar model as a minimal model in which the weak scale is generated dynamically from the Planck scale. This model contains only two real scalar fields and does not contain any fermions or gauge fields. In this model, due to a Coleman–Weinberg-like mechanism, the one-scalar field spontaneously breaks the $ \mathbb{Z}_2$ symmetry with a vacuum expectation value connected with the cutoff momentum. We investigate this using the one-loop effective potential, renormalization group and large-$N$ limit. We also investigate whether it is possible to reproduce the mass term and vacuum expectation value of the Higgs field by coupling this model with the standard model in the Higgs portal framework. In this case, the one-scalar field that does not break $\mathbb{Z}_2$ can be a candidate for dark matter and have a mass of about several TeV in appropriate parameters. On the other hand, the other scalar field breaks $\mathbb{Z}_2$ and has a mass of several tens of GeV. These results will be verifiable in near-future experiments.


2019 ◽  
Vol 34 (38) ◽  
pp. 2050057
Author(s):  
Hai Lin ◽  
Gaurav Narain

In this paper, we look for AdS solutions to generalized gravity theories in the bulk in various spacetime dimensions. The bulk gravity action includes the action of a non-minimally coupled scalar field with gravity, and a higher-derivative action of gravity. The usual Einstein–Hilbert gravity is induced when the scalar acquires a nonzero vacuum expectation value. The equation of motion in the bulk shows scenarios where AdS geometry emerges on-shell. We further obtain the action of the fluctuation fields on the background at quadratic and cubic orders.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
A. Tofighi ◽  
M. Moazzen ◽  
A. Farokhtabar

In the generalized Randall-Sundrum warped brane-world model the cosmological constant induced on the visible brane can be positive or negative. In this paper we investigate profiles of vacuum expectation value of the bulk scalar field under general Dirichlet and Neumann boundary conditions in the generalized warped brane-world model. We show that the VEV profiles generally depend on the value of the brane cosmological constant. We find that the VEV profiles of the bulk scalar field for a visible brane with negative cosmological constant and positive tension are quite distinct from those of Randall-Sundrum model. In addition we show that the VEV profiles for a visible brane with large positive cosmological constant are also different from those of the Randall-Sundrum model. We also verify that Goldberger and Wise mechanism can work under nonzero Dirichlet boundary conditions in the generalized Randall-Sundrum model.


Sign in / Sign up

Export Citation Format

Share Document