scholarly journals Fragmentation functions of neutral mesons π0 and k0 with Laplace transform approach

2016 ◽  
Vol 31 (17) ◽  
pp. 1650100 ◽  
Author(s):  
F. Taghavi-Shahri ◽  
S. Atashbar Tehrani ◽  
M. Zarei

With an analytical solutions of DGLAP evolution equations based on the Laplace transform method, we find the fragmentation functions (FFs) of neutral mesons, [Formula: see text] and [Formula: see text] at NLO approximation. We also calculated the total fragmentation functions of these mesons and compared them with experimental data and those from global fits. The results show a good agreement between our solutions and other models and they are compatible with experimental data.

2017 ◽  
Vol 32 (14) ◽  
pp. 1750065 ◽  
Author(s):  
Marzieh Mottaghizadeh ◽  
Parvin Eslami ◽  
Fatemeh Taghavi-Shahri

We analytically solved the QED[Formula: see text]QCD-coupled DGLAP evolution equations at leading order (LO) quantum electrodynamics (QED) and next-to-leading order (NLO) quantum chromodynamics (QCD) approximations, using the Laplace transform method and then computed the proton structure function in terms of the unpolarized parton distribution functions. Our analytical solutions for parton densities are in good agreement with those from CT14QED [Formula: see text] (Ref. 6) global parametrizations and APFEL (A PDF Evolution Library) [Formula: see text] (Ref. 4). We also compared the proton structure function, [Formula: see text], with the experimental data released by the ZEUS and H1 collaborations at HERA. There is a nice agreement between them in the range of low and high [Formula: see text] and [Formula: see text].


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Limei Yan

A relatively new iterative Laplace transform method, which combines two methods; the iterative method and the Laplace transform method, is applied to obtain the numerical solutions of fractional Fokker-Planck equations. The method gives numerical solutions in the form of convergent series with easily computable components, requiring no linearization or small perturbation. The numerical results show that the approach is easy to implement and straightforward when applied to space-time fractional Fokker-Planck equations. The method provides a promising tool for solving space-time fractional partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document