Multiplicity fluctuation and phase transition in high-energy collision — A chaos-based study with complex network perspective

2016 ◽  
Vol 31 (35) ◽  
pp. 1650185 ◽  
Author(s):  
Susmita Bhaduri ◽  
Dipak Ghosh

Multiplicity fluctuation provides enough information concerning the dynamics of particle production process and even signature of phase transition from hadronic to QGP phase expected in ultrarelativistic nuclear collision. Numerous analyses reported on the fluctuation pattern of pions have been studied from theoretical and phenomenological approaches. Also the fractal properties have been explored to characterize quantitative degree of fluctuation. The present work reports a study of pion fluctuation from a radically different perspective, using science of complexity. For this we have taken two different interactions — one hadron–nucleus and other nucleus–nucleus, namely [Formula: see text]-AgBr (350 GeV) and [Formula: see text]S-AgBr (200 A[Formula: see text]GeV). We have analyzed both data in the light of complex network analysis, viz. visibility graph method. The data reveal that power of the scale-freeness in visibility graph (PSVG), a quantitative parameter related to Hurst exponent, may provide information on the degree of fluctuation. Further, in a recent work, it was shown that phase transition can also be studied using the same methodology. Based on the result of the present study we further propose to use this methodology, where critical phenomena are to be assessed — even in case of pion fluctuation, for obtaining the QGP like phase transition.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Susmita Bhaduri ◽  
Dipak Ghosh

Recently, a complex network based method of visibility graph has been applied to confirm the scale-freeness and presence of fractal properties in the process of multiplicity fluctuation. Analysis of data obtained from experiments on hadron-nucleus and nucleus-nucleus interactions results in values of Power of Scale-Freeness of Visibility Graph (PSVG) parameter extracted from the visibility graphs. Here, the relativistic nucleus-nucleus interaction data have been analysed to detect azimuthal anisotropy by extending the visibility graph method and extracting the average clustering coefficient, one of the important topological parameters, from the graph. Azimuthal-distributions corresponding to different pseudorapidity regions around the central pseudorapidity value are analysed utilising the parameter. Here we attempt to correlate the conventional physical significance of this coefficient with respect to complex network systems, with some basic notions of particle production phenomenology, like clustering and correlation. Earlier methods for detecting anisotropy in azimuthal distribution were mostly based on the analysis of statistical fluctuation. In this work, we have attempted to find deterministic information on the anisotropy in azimuthal distribution by means of precise determination of topological parameter from a complex network perspective.


2016 ◽  
Vol 31 (27) ◽  
pp. 1650158 ◽  
Author(s):  
Susmita Bhaduri ◽  
Dipak Ghosh

There are numerous existing works on investigating the dynamics of particle production process in ultrarelativistic nuclear collision. In the past, fluctuation of spatial pattern has been analyzed in terms of the scaling behavior of voids. But analysis of the scaling behavior of the void in fractal scenario has not been explored yet. In this work, we have analyzed the fractality of void probability distribution with a completely different and rigorous method called visibility graph analysis, analyzing the void-data produced out of fluctuation of pions in [Formula: see text]S–AgBr interaction at 200 GeV in pseudo-rapidity [Formula: see text] and azimuthal angle [Formula: see text] space. The power of scale-freeness of visibility graph denoted by PSVG is a measure of fractality, which can be used as a quantitative parameter for the assessment of the state of chaotic system. As the behavior of particle production process depends on the target excitation, we can dwell down the void probability distribution in the event-wise fluctuation resulted out of the high energy interaction for different degree of target excitation, with respect to the fractal scenario and analyze the scaling behavior of the voids. From the analysis of the PSVG parameter, we have observed that scaling behavior of void probability distribution in multipion production changes with increasing target excitation. Since visibility graph method is a classic method of complex network analysis, has been applied over fractional Brownian motion (fBm) and fractional Gaussian noises (fGn) to measure the fractality and long-range dependence of a time series successfully, we can quantitatively confirm that fractal behavior of the void probability distribution in particle production process depends on the target excitation.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Bao-Chun Li ◽  
Ting Bai ◽  
Yuan-Yuan Guo ◽  
Fu-Hu Liu

The transverse momentum distributions of final-state particles are very important for high energy collision physics. In this work, we investigate J/ψ and Υ meson distributions in the framework of a particle-production source, where Tsallis statistics are consistently incorporated. The results are in good agreement with the experimental data in p-p and p-Pb collisions at LHC energies. The temperature of the emission source and the nonequilibrium degree of the collision system are extracted.


1990 ◽  
Vol 42 (4) ◽  
pp. 1519-1529 ◽  
Author(s):  
S. Shaheen ◽  
F. D. Becchetti ◽  
D. A. Roberts ◽  
J. W. Jänecke ◽  
R. L. Stern ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document