scholarly journals Black holes in magnetic monopoles with a dark halo

2019 ◽  
Vol 34 (01) ◽  
pp. 1950002 ◽  
Author(s):  
A. Lugo ◽  
J. M. Pérez Ipiña ◽  
F. A. Schaposnik

We study a spontaneously broken Einstein–Yang–Mills–Higgs model coupled via a Higgs portal to an uncharged scalar [Formula: see text]. We present a phase diagram of self-gravitating solutions showing that depending on the choice of parameters of the [Formula: see text] scalar potential and the Higgs portal coupling constant [Formula: see text], one can identify different regions: If [Formula: see text] is sufficiently small, a [Formula: see text] halo is created around the monopole core which in turn surrounds a black hole. For larger values of [Formula: see text], no halo exists and the solution is just a black hole monopole one. When the horizon radius grows and becomes larger than the monopole radius, solely a black hole solution exists. Because of the presence of the [Formula: see text] scalar, a bound for the Higgs potential coupling constant exists and when it is not satisfied, the vacuum is unstable and no nontrivial solution exists. We briefly comment on possible connections of our results with those found in recent dark matter axion models.

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1303
Author(s):  
A. J. Nurmagambetov ◽  
I. Y. Park

We continue our recent endeavor in which a time-dependent black hole solution of a one-loop quantum-corrected Einstein-scalar system was obtained and its near-horizon behavior was analyzed. The energy analysis led to a trans-Planckian scaling behavior near the event horizon. In the present work, the analysis is extended to a rotating black hole solution of an Einstein–Maxwell-scalar system with a Higgs potential. Although the analysis becomes much more complex compared to that of the previous, we observe the same basic features, including the quantum-gravitational trans-Planckian energy near the horizon.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Kun Meng ◽  
Da-Bao Yang ◽  
Zhan-Ning Hu

A new four-dimensional black hole solution of Einstein-Born-Infeld-Yang-Mills theory is constructed; several degenerated forms of the black hole solution are presented. The related thermodynamical quantities are calculated, with which the first law of thermodynamics is checked to be satisfied. Identifying the cosmological constant as pressure of the system, the phase transition behaviors of the black hole in the extended phase space are studied.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
F. Naderi ◽  
A. Rezaei-Aghdam ◽  
Z. Mahvelati-Shamsabadi

AbstractIn this paper, we present two new families of spatially homogeneous black hole solution for $$z=4$$ z = 4 Hořava–Lifshitz Gravity equations in $$(4+1)$$ ( 4 + 1 ) dimensions with general coupling constant $$\lambda $$ λ and the especial case $$\lambda =1$$ λ = 1 , considering $$\beta =-1/3$$ β = - 1 / 3 . The three-dimensional horizons are considered to have Bianchi types II and III symmetries, and hence the horizons are modeled on two types of Thurston 3-geometries, namely the Nil geometry and $$H^2\times R$$ H 2 × R . Being foliated by compact 3-manifolds, the horizons are neither spherical, hyperbolic, nor toroidal, and therefore are not of the previously studied topological black hole solutions in Hořava–Lifshitz gravity. Using the Hamiltonian formalism, we establish the conventional thermodynamics of the solutions defining the mass and entropy of the black hole solutions for several classes of solutions. It turned out that for both horizon geometries the area term in the entropy receives two non-logarithmic negative corrections proportional to Hořava–Lifshitz parameters. Also, we show that choosing some proper set of parameters the solutions can exhibit locally stable or unstable behavior.


2007 ◽  
Vol 76 (8) ◽  
Author(s):  
S. Habib Mazharimousavi ◽  
M. Halilsoy

Author(s):  
R P Singh ◽  
B K Singh ◽  
B R K Gupta ◽  
S Sachan

The Bardeen black hole solution is the first spherically symmetric regular black hole based on the Sakharov and Gliner proposal which is the modification of the Schwarzschild black hole. We present the Bardeen black hole solution in presence of the dRGT massive gravity, which is regular everywhere in the presence of a nonlinear source. The obtained solution interpolates with the Bardeen black hole in the absence of massive gravity parameter and the Schwarzschild black hole in the limit of magnetic charge g=0. We investigate the thermodynamical quantities viz. mass (M), temperature (T), entropy (S) and free energy (F) in terms of horizon radius for both canonical and grand canonical ensembles. We check the local and global stability of the obtained solution by studying the heat capacity and free energy. The heat capacity flips the sign at r = r<sub>c</sub>. The black hole is thermodynamically stable with positive heat capacity C>0 for i.e., globally preferred with negative free energy F < 0. In addition, we also study the phase structure of the obtained solution in both ensembles.


Author(s):  
A. J. Nurmagambetov ◽  
I. Y. Park

We continue our recent endeavor in which a time-dependent black hole solution of a one-loop quantum-corrected Einstein-scalar system was obtained and its near-horizon behavior was analyzed. The energy analysis led to a trans-Planckian scaling behavior near the event horizon. In the present work the analysis is extended to a rotating black hole solution of an Einstein-Maxwell-scalar system with a Higgs potential. Although the analysis becomes much more complex compared to that of the previous, we observe the same basic features, including the quantum-gravitational trans-Planckian energy near the horizon.


Sign in / Sign up

Export Citation Format

Share Document