bianchi types
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
F. Naderi ◽  
A. Rezaei-Aghdam ◽  
Z. Mahvelati-Shamsabadi

AbstractIn this paper, we present two new families of spatially homogeneous black hole solution for $$z=4$$ z = 4 Hořava–Lifshitz Gravity equations in $$(4+1)$$ ( 4 + 1 ) dimensions with general coupling constant $$\lambda $$ λ and the especial case $$\lambda =1$$ λ = 1 , considering $$\beta =-1/3$$ β = - 1 / 3 . The three-dimensional horizons are considered to have Bianchi types II and III symmetries, and hence the horizons are modeled on two types of Thurston 3-geometries, namely the Nil geometry and $$H^2\times R$$ H 2 × R . Being foliated by compact 3-manifolds, the horizons are neither spherical, hyperbolic, nor toroidal, and therefore are not of the previously studied topological black hole solutions in Hořava–Lifshitz gravity. Using the Hamiltonian formalism, we establish the conventional thermodynamics of the solutions defining the mass and entropy of the black hole solutions for several classes of solutions. It turned out that for both horizon geometries the area term in the entropy receives two non-logarithmic negative corrections proportional to Hořava–Lifshitz parameters. Also, we show that choosing some proper set of parameters the solutions can exhibit locally stable or unstable behavior.


Author(s):  
Luiz C. Garcia de Andrade

Recently Palle has investigated the chiral vorticity and Cartan torsion in neutrino asymmetries. In his case he addressed this problem in Goedel s like anisotropic Einstein-Catan cosmology. In this paper we discusse how these ideas applied to sheared Bianchi types I Einstein-Cartan (EC) neutrino amisotropic cosmology, affect the handness of neutrinos in the universe. Actually here a novel concept of the chiral metric is introduced where metric functions also possess two distinct signs as in neutrino flipping or helicity. The axial anomaly equation for neutrinos in the presence of torsion and metric chirality is shown to produce left-handed neutrinos from right-handed torsion. Metric chirality is shown to be able to define how the metric would behave far away of neutrino density. Chiral flipping of the chiral neutrinos in the presence of torsion is also investigated. It is shown that when the chiral torsion is left-handed the chemical chiral potential vanishes as the universe expands.


2019 ◽  
Vol 62 (1) ◽  
pp. 49-54
Author(s):  
E. V. Kuvshinova ◽  
D. M. Yanishevsky
Keyword(s):  

Pramana ◽  
2014 ◽  
Vol 83 (4) ◽  
pp. 619-630 ◽  
Author(s):  
S D Katore ◽  
M M Sancheti ◽  
S P Hatkar

Open Physics ◽  
2014 ◽  
Vol 12 (10) ◽  
Author(s):  
Shri Ram ◽  
Priyanka Kumari

AbstractIn this paper we present non-singular Bianchi types I and V cosmological models, in the presence of bulk viscous fluid and within the framework of f(R,T) gravity theory. Exact solutions to the field equations are obtained by choosing a particular form of the function f(R,T) and a special value for the average scale factor of the model, which corresponds to a time- dependent deceleration parameter. The cosmological models initially accelerate for a certain period of time and thereafter decelerate. The physical and kinematical properties of the models of the universe are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
José Antonio Belinchón

We study the models and their particular case, the so-called -models under the self-similarity hypothesis. In particular, we calculate the exact form that each quantity may take in order that field equations (FEs) admit self-similar solutions. The methods employed allow us to obtain general results that are valid not only for the FRW metric, but also for all the Bianchi types as well as for the Kantowski-Sachs model (under the self-similarity hypothesis and the power-law hypothesis for the scale factors).


Sign in / Sign up

Export Citation Format

Share Document