Relativistic anisotropic model of strange star SAX J1808.4-3658 admitting quadratic equation of state

2019 ◽  
Vol 34 (29) ◽  
pp. 1950179 ◽  
Author(s):  
Satyanarayana Gedela ◽  
Neeraj Pant ◽  
R. P. Pant ◽  
Jaya Upreti

In this paper, we study the behavior of static spherically symmetric relativistic model of the strange star SAX J1808.4-3658 by exploring a new exact solution for anisotropic matter distribution. We analyze the comprehensive structure of the space–time within the stellar configuration by using the Einstein field equations amalgamated with quadratic equation of state (EoS). Further, we compare solutions of quadratic EoS model with modified Bose–Einstein condensation EoS and linear EoS models which can be generated by a suitable choice of parameters in quadratic EoS model. Subsequently, we compare the properties of strange star SAX J1808.4-3658 for all the three EoS models with the help of graphical representations.

Author(s):  
Manuel Malaver ◽  
Hamed Kasmaei

Recent astronomical observations with respect to measurements in distant supernovas, cosmic microwave background and weak gravitational lensing confirm that the Universe is undergoing a phase of accelerated expansion and it has been proposed that this cosmological behavior is caused by a hypothetical dark energy which has a strong negative pressure that allows explain the expanding universe. Several theoretical ideas and models related dark the energy includes the cosmological constant, quintessence, Chaplygin gas, braneworld and tachyonic scalar fields. In this paper, we have obtained new relativistic stellar configurations considering an anisotropic fluid distribution with a charge distribution which could represents a potential model of a dark energy star. In order to investigate the effect of a quadratic equation of state in this anisotropic model we specify particular forms for the gravitational potential that allow solving the Einstein-Maxwell field equations. For these new solutions we checked that the radial pressure, metric coefficients, energy density, anisotropy factor, charge density , mass function are well defined and are regular in the interior of the star. The solutions found can be used in the development of dark energy stars models satisfying all physical acceptability conditions but the causality condition and strong energy condition are violated. We expect that these models have multiple applications in astrophysics and cosmology.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
G. P. Singh ◽  
Binaya K. Bishi

This paper deals with the study of Bianchi type-I universe in the context off(R,T)gravity. Einstein’s field equations inf(R,T)gravity have been solved in the presence of cosmological constantΛand quadratic equation of state (EoS)p=αρ2-ρ, whereα≠0is a constant. Here, we have discussed two classes off(R,T)gravity; that is,f(R,T)=R+2f(T)andf(R,T)=f1(R)+f2(T). A set of models has been taken into consideration based on the plausible relation. Also, we have studied some physical and kinematical properties of the models.


2018 ◽  
Vol 15 (11) ◽  
pp. 1850194 ◽  
Author(s):  
Mahbubur Rahman Mollah ◽  
Kangujam Priyokumar Singh ◽  
Pheiroijam Suranjoy Singh

The paper deals with the investigation of a homogeneous and anisotropic space-time described by Bianchi type-III metric with perfect fluid in Lyra geometry setting. Exact solutions of Einstein’s field equations have been obtained under the assumption of quadratic equation of state (EoS) of the form [Formula: see text], where [Formula: see text] is a constant and strictly [Formula: see text]. The physical and geometrical aspects are also examined in detail.


2016 ◽  
Vol 25 (4) ◽  
pp. 309 ◽  
Author(s):  
Kangujam Priyokumar Singh ◽  
Mukunda Dewri

This paper discusses about Robertson-Walker space-time with quadratic equation of state and dynamical cosmological parameter Λ . Some exact solutions of Einstein’s field equations for three cases have been obtained. Physical behaviors of the models are discussed in detail.


2019 ◽  
Vol 15 (S356) ◽  
pp. 383-384
Author(s):  
Seman Abaraya ◽  
Tolu Biressa

AbstractCompact objects are of great interest in astrophysical research. There are active research interests in understanding better various aspects of formation and evolution of these objects. In this paper we addressed some problems related to the compact objects mass limit. We employed Einstein field equations (EFEs) to derive the equation of state (EoS). With the assumption of high densities and low temperature of compact sources, the derived equation of state is reduced to polytropic kind. Studying the polytropic equations we obtained similar physical implications, in agreement to previous works. Using the latest version of Mathematica-11 in our numerical analysis, we also obtained similar results except slight differences in accuracy.


2013 ◽  
Vol 22 (13) ◽  
pp. 1350074 ◽  
Author(s):  
R. SHARMA ◽  
B. S. RATANPAL

A class of solutions describing the interior of a static spherically symmetric compact anisotropic star is reported. The analytic solution has been obtained by utilizing the Finch and Skea [Class. Quantum Grav.6 (1989) 467] ansatz for the metric potential grr which has a clear geometric interpretation for the associated background spacetime. Based on physical grounds, appropriate bounds on the model parameters have been obtained and it has been shown that the model admits an equation of state (EOS) which is quadratic in nature.


Sign in / Sign up

Export Citation Format

Share Document