scholarly journals Elements of the Metric–Affine gravity I: Aspects of F(R) theories reductions and the topologically massive gravity

Author(s):  
Yessica Dominguez ◽  
Rolando Gaitan

Some classical aspects of Metric–Affine Gravity are reviewed in the context of the [Formula: see text] type models (polynomials of degree [Formula: see text] in the Riemann tensor) and the topologically massive gravity. At the nonperturbative level, we explore the consistency of the field equations when the [Formula: see text] models are reduced to a Riemann–Christoffel (RCh) space–time, either via a Riemann–Cartan (RC) space or via an Einstein–Weyl (EW) space. It is well known for the case [Formula: see text] that any path or reduction “classes” via RC or EW leads to the same field equations with the exception of the [Formula: see text] theories for [Formula: see text]. We verify that this discrepancy can be solved by imposing nonmetricity and torsion constraints. In particular, we explore the case [Formula: see text] for the interest in expected physical solutions as those of conformally flat class. On the other hand, the symmetries of the topologically massive gravity are reviewed, as the physical content in RC and EW scenarios. The appearance of a nonlinearly modified selfdual model in RC and existence of many nonunitary degrees of freedom in EW with the suggestion of a modified model for a massive gravity which cure the unphysical propagations shall be discussed.

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Alberto Escalante ◽  
Jorge Hernández Aguilar

AbstractA detailed Gitman–Lyakhovich–Tyutin analysis for higher-order topologically massive gravity is performed. The full structure of the constraints, the counting of physical degrees of freedom, and the Dirac algebra among the constraints are reported. Moreover, our analysis presents a new structure into the constraints and we compare our results with those reported in the literature where a standard Ostrogradski framework was developed.


2003 ◽  
Vol 14 (01) ◽  
pp. 41-48 ◽  
Author(s):  
G. ZET ◽  
V. MANTA ◽  
S. BABETI

A deSitter gauge theory of gravitation over a spherical symmetric Minkowski space–time is developed. The "passive" point of view is adapted, i.e., the space–time coordinates are not affected by group transformations; only the fields change under the action of the symmetry group. A particular ansatz for the gauge fields is chosen and the components of the strength tensor are computed. An analytical solution of Schwarzschild–deSitter type is obtained in the case of null torsion. It is concluded that the deSitter group can be considered as a "passive" gauge symmetry for gravitation. Because of their complexity, all the calculations, inclusive of the integration of the field equations, are performed using an analytical program conceived in GRTensorII for MapleV. The program allows one to compute (without using a metric) the strength tensor [Formula: see text], Riemann tensor [Formula: see text], Ricci tensor [Formula: see text], curvature scalar [Formula: see text], field equations, and the integration of these equations.


Author(s):  
V. Joseph

AbstractA solution of Einstein's vacuum field equations, apparently new, is exhibited. The metric, which is homogeneous (that is, admits a three-parameter group of motions transitive on space-like hypersurfaces), belongs to Taub Type V. The canonical form of the Riemann tensor, which is of Petrov Type I, is determined.


Author(s):  
Pawan Joshi ◽  
Utkarsh Kumar ◽  
Sukanta Panda

Nonlocal gravity models are constructed to explain the current acceleration of the universe. These models are inspired by the infrared correction appearing in Einstein–Hilbert action. Here, we develop the Hamiltonian formalism of a nonlocal model by considering only terms to quadratic order in Riemann tensor, Ricci tensor and Ricci scalar. We show how to count degrees of freedom using Hamiltonian formalism including Ricci tensor and Ricci scalar terms. In this model, we have also worked out with a choice of a nonlocal action which has only two degrees of freedom equivalent to GR. Finally, we find the existence of additional constraints in Hamiltonian required to remove the ghosts in our full action. We also compare our results with that of obtained using Lagrangian formalism.


Sign in / Sign up

Export Citation Format

Share Document