AN INTERPRETATION OF THE ABELIAN CHERN-SIMONS VACUUM HOLONOMY

1990 ◽  
Vol 05 (03) ◽  
pp. 559-569 ◽  
Author(s):  
GUILLERMO ZEMBA

It is shown that the recently discovered vacuum holonomy in the pure Abelian Chern-Simons theory in 2+1 dimensions can be interpreted as the expectation value of the holonomy operator of Wilson loops once the theory is defined on a constant time plane. This may be accomplished by a prescription that connects the two- and three-dimensional points of view. The projected holonomy is framing-dependent and coincides with the previous result if a canonical framing is used. A physical model is considered to discuss its physical significance.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Leonardo Santilli ◽  
Miguel Tierz

Abstract We study several quiver Chern-Simons-matter theories on the three-sphere, combining the matrix model formulation with a systematic use of Mordell’s integral, computing partition functions and checking dualities. We also consider Wilson loops in ABJ(M) theories, distinguishing between typical (long) and atypical (short) representations and focusing on the former. Using the Berele-Regev factorization of supersymmetric Schur polynomials, we express the expectation value of the Wilson loops in terms of sums of observables of two factorized copies of U(N ) pure Chern-Simons theory on the sphere. Then, we use the Cauchy identity to study the partition functions of a number of quiver Chern-Simons-matter models and the result is interpreted as a perturbative expansion in the parameters tj = −e2πmj , where mj are the masses. Through the paper, we incorporate different generalizations, such as deformations by real masses and/or Fayet-Iliopoulos parameters, the consideration of a Romans mass in the gravity dual, and adjoint matter.


2003 ◽  
Vol 18 (24) ◽  
pp. 4451-4468 ◽  
Author(s):  
SOLANGE-ODILE SALIU

All consistent interactions in a three-dimensional theory with tensor gauge fields of degrees two and three are obtained by means of the deformation of the solution to the master equation combined with cohomological techniques. The local BRST cohomology of this model allows the deformation of the Lagrangian action, accompanying gauge symmetries and gauge algebra. The relationship with the Chern–Simons theory is discussed.


1990 ◽  
Vol 05 (32) ◽  
pp. 2747-2751 ◽  
Author(s):  
B. BRODA

A genuinely three-dimensional covariant approach to the monodromy operator (skein relations) in the context of Chern-Simons theory is proposed. A holomorphic path-integral representation for the holonomy operator (Wilson loop) and for the non-abelian Stokes theorem is used.


1992 ◽  
Vol 70 (5) ◽  
pp. 301-304 ◽  
Author(s):  
D. G. C. McKeon

We investigate a three-dimensional gauge theory modeled on Chern–Simons theory. The Lagrangian is most compactly written in terms of a two-index tensor that can be decomposed into fields with spins zero, one, and two. These all mix under the gauge transformation. The background-field method of quantization is used in conjunction with operator regularization to compute the real part of the two-point function for the scalar field.


1998 ◽  
Vol 13 (07) ◽  
pp. 511-525
Author(s):  
J. L. LÓPEZ

The universality of radiative corrections to the gauge coupling constant k of the Chern–Simons theory is studied in a very general regularization scheme in the background gauge formalism. The effective constant k eff induced by radiative corrections can be any real number depending on the balance between the ultraviolet behavior of scalar and pseudoscalar terms in the regularized action. This ambiguity of the effective action is related to the ambiguity in the parity anomaly of three-dimensional Dirac fermions. The effective action also contains a non-analytic term in the gauge field with the same coefficient and opposite gauge transformation in such a way that the effective action is gauge-invariant. The results open the possibility of a connection with non-rational two-dimensional conformal theories for non-integer values of k eff .


1990 ◽  
Vol 05 (05) ◽  
pp. 959-988 ◽  
Author(s):  
MICHIEL BOS ◽  
V.P. NAIR

Three-dimensional Chern-Simons gauge theories are quantized in a functional coherent state formalism. The connection with two-dimensional conformal field theory is found to emerge naturally. The normalized wave functionals are identified as generating functionals for the chiral blocks of two-dimensional current algebra.


Sign in / Sign up

Export Citation Format

Share Document