FIRST PRINCIPLE CALCULATION OF ELECTRONIC BAND STRUCTURE AND OPTICAL PROPERTIES OF KIO3

2009 ◽  
Vol 23 (10) ◽  
pp. 2405-2412
Author(s):  
HARUN AKKUS ◽  
BAHATTIN ERDINC

The electronic band structure and optical properties of the ferroelectric single crystal KIO 3 have been investigated using the density functional methods. The calculated band structure for KIO 3 evidences that the crystal has a direct band gap with a value of 2.83 eV. The structural optimization has been performed. The real and imaginary parts of dielectric function, energy-loss function for volume and surface, and refractive index are calculated along the crystallographic axes.

2018 ◽  
Vol 1 (1) ◽  
pp. 46-50
Author(s):  
Rita John ◽  
Benita Merlin

In this study, we have analyzed the electronic band structure and optical properties of AA-stacked bilayer graphene and its 2D analogues and compared the results with single layers. The calculations have been done using Density Functional Theory with Generalized Gradient Approximation as exchange correlation potential as in CASTEP. The study on electronic band structure shows the splitting of valence and conduction bands. A band gap of 0.342eV in graphene and an infinitesimally small gap in other 2D materials are generated. Similar to a single layer, AA-stacked bilayer materials also exhibit excellent optical properties throughout the optical region from infrared to ultraviolet. Optical properties are studied along both parallel (||) and perpendicular ( ) polarization directions. The complex dielectric function (ε) and the complex refractive index (N) are calculated. The calculated values of ε and N enable us to analyze optical absorption, reflectivity, conductivity, and the electron loss function. Inferences from the study of optical properties are presented. In general the optical properties are found to be enhanced compared to its corresponding single layer. The further study brings out greater inferences towards their direct application in the optical industry through a wide range of the optical spectrum.


Author(s):  
M. A. HADI ◽  
M. S. ALI ◽  
S. H. NAQIB ◽  
A. K. M. A. ISLAM

First-principles investigation of the geometry, electronic band structure, Vickers hardness, thermodynamic and optical properties of three superconducting MAX compounds Nb 2 AsC , Nb 2 InC and Mo 2 GaC have been carried out by the plane-wave pseudopotential method based on density functional theory (DFT) implemented in the CASTEP code. The theoretical Vickers hardness has been studied by means of Mulliken bond population analysis and electronic densities of states. The thermodynamic properties such as the temperature and pressure dependent bulk modulus, Debye temperature, specific heats and thermal expansion coefficient of the three 211 MAX phases are derived from the quasi-harmonic Debye model with phononic effect for the first time. Furthermore, all the optical properties are determined and analyzed for the first time for two different polarization directions. The theoretical findings are compared with relevant experiments (where available) and the various implications are discussed in details.


2014 ◽  
Vol 510 ◽  
pp. 57-62 ◽  
Author(s):  
N.H. Hussin ◽  
M.F.M. Taib ◽  
N.A. Johari ◽  
F.W. Badrudin ◽  
O.H. Hassan ◽  
...  

Structural, electronic, and optical properties of PbTiO3, SnTiO3, and GeTiO3 tetragonals (P4mm, 99 space group) were investigated using density functional theory as implemented in pseudo-potential plane wave in CASTEP computer code. The calculated equilibrium lattice parameter, electronic band structure, and optical properties for PbTiO3 (reference compound) are in good agreement with the available experiment data. The result also shows that GeTiO3 has a higher tetragonality (c/a=1.18) compared with SnTiO3 (c/a=1.15) and PbTiO3 (c/a=1.05). Calculations of the elastic constants of PbTiO3, SnTiO3, and GeTiO3 tetragonals show that they are mechanically stable. The electronic band structure shows that PbTiO3 has higher indirect band gap at X-G compared with SnTiO3 and GeTiO3, as explained in detail by the optical properties of ATiO3 (A=Pb, Sn, Ge) through the refractive index and absorption coefficient.


2010 ◽  
Vol 24 (31) ◽  
pp. 6049-6067 ◽  
Author(s):  
V. P. ZHUKOV ◽  
V. M. ZAINULLINA ◽  
E. V. CHULKOV

The effect of doping with boron, carbon and nitrogen on crystal lattice parameters, electronic band structure and optical absorption of anatase has been studied by means of an ab initio density functional theory approach. The investigations included optimization of crystal structure based on the pseudo-potential plane-wave approach. The spin-polarized calculations of the band structure with the account of on-site Coulomb correlations (LSDA+U) employing the tight-binding linear muffin-tin orbitals method (TB-LMTO) have also been performed. The evaluations of optical absorption were based on the calculations of dielectric function with local field effects taken into account. We find that the crystal lattice relaxation around the doping atoms produces noticeable changes in the band structure, magnetic state and optical properties of the doped compounds. The most considerable effects are the collapse of magnetic moment on carbon atom and an essential reduction of the optical absorption in the region of the impurity band — impurity band transitions. Comparing optical absorption for different kinds of doping and taking into account the intensity distribution of the solar light we come to the conclusion than the doping with boron is the most promising kind of doping for photocatalytic applications of the doped anatase.


Open Physics ◽  
2008 ◽  
Vol 6 (1) ◽  
Author(s):  
Harun Akkus ◽  
Amirullah Mamedov ◽  
Ali Kazempour ◽  
Hadi Akbarzadeh

AbstractThe electronic structure, linear, and non-linear optical properties of ferroelectric-semiconductor SbSBr are investigated in the non-polar (paraelectric) and polar (ferroelectric) phase, using the density functional methods in the generalized gradient approximation. The electronic band structure obtained shows that SbSBr has an indirect forbidden gap of 2.16 and 2.21 eV in the paraelectric and ferroelectric phase, respectively. The linear photon-energy dependent dielectric functions and some optical functions, such as absorption and extinction coefficients, refractive index, energy-loss function, reflectivity, and optical conductivity in both phases and photon-energy dependent second-order susceptibilities in the ferroelectric phase are calculated. Moreover, some important optical parameters, such as the effective number of valence electrons and the effective optical dielectric constant, are calculated in both phases.


2018 ◽  
Vol 60 (9) ◽  
pp. 1662
Author(s):  
А.С. Шинкоренко ◽  
В.И. Зиненко ◽  
М.С. Павловский

AbstractAb initio calculations of the structural, electronic, and optical properties of the CdB_4O_7 and HgB_4O_7 tetraborate compounds in three structural modifications with the Pbca , Cmcm , and Pmn 2_1 symmetry have been performed in the framework of the density functional theory using the VASP package. The calculations of the electronic band structure showed that these compounds in all the investigated modifications are dielectrics with a band gap of 2–4 eV. The calculation of the structural properties of the tetraborates under pressure showed that the phase transition between the Pbca and Pmn 2_1 structures in cadmium and mercury tetraborates occurs under pressures of 4.8 and 4.7 GPa, respectively.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 7
Author(s):  
B. Bachir Bouiadjra ◽  
N. Mehnane ◽  
N. Oukli

Based on the full potential linear muffin-tin orbitals (FPLMTO) calculation within density functional theory, we systematically investigate the electronic and optical properties of (100) and (110)-oriented (InN)/(GaN)n zinc-blende superlattice with one InN monolayer and with different numbers of GaN monolayers. Specifically, the electronic band structure calculations and their related features, like the absorption coefficient and refractive index of these systems are computed over a wide photon energy scale up to 20 eV. The effect of periodicity layer numbers n on the band gaps and the optical activity of (InN)/(GaN)n SLs in the both  growth axis (001) and (110) are examined and compared. Because of prospective optical aspects of (InN)/(GaN)n such as light-emitting applications, this theoretical study can help the experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document